Progress on polynomial commitment

This commit is contained in:
wborgeaud 2021-05-03 15:17:05 +02:00
parent 0fa0942981
commit bb8a68e198
5 changed files with 688 additions and 15 deletions

View File

@ -15,19 +15,20 @@ use anyhow::{ensure, Result};
/// while increasing L, potentially requiring more challenge points.
const EPSILON: f64 = 0.01;
struct FriConfig {
proof_of_work_bits: u32,
#[derive(Debug, Clone)]
pub struct FriConfig {
pub proof_of_work_bits: u32,
rate_bits: usize,
pub rate_bits: usize,
/// The arity of each FRI reduction step, expressed (i.e. the log2 of the actual arity).
/// For example, `[3, 2, 1]` would describe a FRI reduction tree with 8-to-1 reduction, then
/// a 4-to-1 reduction, then a 2-to-1 reduction. After these reductions, the reduced polynomial
/// is sent directly.
reduction_arity_bits: Vec<usize>,
pub reduction_arity_bits: Vec<usize>,
/// Number of query rounds to perform.
num_query_rounds: usize,
pub num_query_rounds: usize,
}
fn fri_delta(rate_log: usize, conjecture: bool) -> f64 {
@ -54,7 +55,7 @@ fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 {
}
/// Builds a FRI proof.
fn fri_proof<F: Field>(
pub fn fri_proof<F: Field>(
// Coefficients of the polynomial on which the LDT is performed.
// Only the first `1/rate` coefficients are non-zero.
polynomial_coeffs: &PolynomialCoeffs<F>,

View File

@ -1,26 +1,117 @@
use crate::field::fft::fft;
use crate::field::field::Field;
use crate::field::lagrange::{interpolant, interpolate};
use crate::fri::{fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree;
use crate::polynomial::polynomial::PolynomialValues;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::polynomial::old_polynomial::Polynomial;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::util::transpose;
struct ListPolynomialCommitment<F: Field> {
pub lde_values: Vec<Vec<F>>,
pub rate_bits: usize,
pub polynomials: Vec<PolynomialCoeffs<F>>,
pub fri_config: FriConfig,
pub merkle_tree: MerkleTree<F>,
pub degree: usize,
pub blinding: bool,
}
impl<F: Field> ListPolynomialCommitment<F> {
pub fn new(values: Vec<PolynomialValues<F>>, rate_bits: usize) -> Self {
let lde_values = values
.into_iter()
.map(|p| p.lde(rate_bits).values)
pub fn new(
polynomials: Vec<PolynomialCoeffs<F>>,
fri_config: &FriConfig,
blinding: bool,
) -> Self {
let degree = polynomials[0].len();
let mut lde_values = polynomials
.iter()
.map(|p| {
assert_eq!(p.len(), degree, "Polynomial degree invalid.");
p.clone()
.lde(fri_config.rate_bits)
.coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR)
.values
})
.chain(blinding.then(|| {
(0..(degree << fri_config.rate_bits))
.map(|_| F::rand())
.collect()
}))
.collect::<Vec<_>>();
let merkle_tree = MerkleTree::new(transpose(&lde_values), false);
Self {
lde_values,
rate_bits,
polynomials,
fri_config: fri_config.clone(),
merkle_tree,
degree,
blinding,
}
}
pub fn open(&self, points: &[F], challenger: &mut Challenger<F>) -> OpeningProof<F> {
for p in points {
assert_ne!(
p.exp_usize(self.degree),
F::ONE,
"Opening point is in the subgroup."
);
}
let evaluations = points
.iter()
.map(|&x| {
self.polynomials
.iter()
.map(|p| p.eval(x))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
for evals in &evaluations {
challenger.observe_elements(evals);
}
let alpha = challenger.get_challenge();
let scaled_poly = self
.polynomials
.iter()
.rev()
.map(|p| p.clone().into())
.fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p));
let scaled_evals = evaluations
.iter()
.map(|e| reduce_with_powers(e, alpha))
.collect::<Vec<_>>();
let pairs = points
.iter()
.zip(&scaled_evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
debug_assert!(pairs.iter().all(|&(x, e)| scaled_poly.eval(x) == e));
let interpolant: Polynomial<F> = interpolant(&pairs).into();
let denominator = points.iter().fold(Polynomial::empty(), |acc, &x| {
acc.mul(&vec![-x, F::ONE].into())
});
let numerator = scaled_poly.add(&interpolant.neg());
let (mut quotient, rem) = numerator.polynomial_division(&denominator);
debug_assert!(rem.is_zero());
quotient.pad(quotient.degree().next_power_of_two());
let quotient_values = fft(quotient.clone().into());
let fri_proof = fri_proof(
&quotient.into(),
&quotient_values,
challenger,
&self.fri_config,
);
todo!()
}
}
pub struct OpeningProof<F: Field> {
evaluations: Vec<Vec<F>>,
}

View File

@ -1,3 +1,4 @@
pub mod commitment;
pub(crate) mod division;
mod old_polynomial;
pub mod polynomial;

View File

@ -0,0 +1,573 @@
#![allow(clippy::many_single_char_names)]
use crate::field::fft::{
fft_precompute, fft_with_precomputation_power_of_2, ifft_with_precomputation_power_of_2,
FftPrecomputation,
};
use crate::field::field::Field;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::util::log2_ceil;
use std::cmp::Ordering;
use std::ops::{Index, IndexMut, RangeBounds};
use std::slice::{Iter, IterMut, SliceIndex};
/// Polynomial struct holding a polynomial in coefficient form.
#[derive(Debug, Clone)]
pub struct Polynomial<F: Field>(Vec<F>);
impl<F: Field> PartialEq for Polynomial<F> {
fn eq(&self, other: &Self) -> bool {
let max_terms = self.0.len().max(other.0.len());
for i in 0..max_terms {
let self_i = self.0.get(i).cloned().unwrap_or(F::ZERO);
let other_i = other.0.get(i).cloned().unwrap_or(F::ZERO);
if self_i != other_i {
return false;
}
}
true
}
}
impl<F: Field> Eq for Polynomial<F> {}
impl<F: Field> From<Vec<F>> for Polynomial<F> {
/// Takes a vector of coefficients and returns the corresponding polynomial.
fn from(coeffs: Vec<F>) -> Self {
Self(coeffs)
}
}
impl<F: Field> From<PolynomialCoeffs<F>> for Polynomial<F> {
fn from(coeffs: PolynomialCoeffs<F>) -> Self {
Self(coeffs.coeffs)
}
}
impl<F: Field> From<Polynomial<F>> for PolynomialCoeffs<F> {
fn from(poly: Polynomial<F>) -> Self {
Self::new(poly.0)
}
}
impl<F, I> Index<I> for Polynomial<F>
where
F: Field,
I: SliceIndex<[F]>,
{
type Output = I::Output;
/// Indexing on the coefficients.
fn index(&self, index: I) -> &Self::Output {
&self.0[index]
}
}
impl<F, I> IndexMut<I> for Polynomial<F>
where
F: Field,
I: SliceIndex<[F]>,
{
fn index_mut(&mut self, index: I) -> &mut <Self as Index<I>>::Output {
&mut self.0[index]
}
}
impl<F: Field> Polynomial<F> {
/// Takes a slice of coefficients and returns the corresponding polynomial.
pub fn from_coeffs(coeffs: &[F]) -> Self {
Self(coeffs.to_vec())
}
/// Returns the coefficient vector.
pub fn coeffs(&self) -> &[F] {
&self.0
}
/// Empty polynomial;
pub fn empty() -> Self {
Self(Vec::new())
}
/// Zero polynomial with length `len`.
/// `len = 1` is the standard representation, but sometimes it's useful to set `len > 1`
/// to have polynomials with uniform length.
pub fn zero(len: usize) -> Self {
Self(vec![F::ZERO; len])
}
pub fn iter(&self) -> Iter<F> {
self.0.iter()
}
pub fn iter_mut(&mut self) -> IterMut<F> {
self.0.iter_mut()
}
pub fn is_zero(&self) -> bool {
self.0.iter().all(|x| x.is_zero())
}
/// Number of coefficients held by the polynomial. Is NOT equal to the degree in general.
pub fn len(&self) -> usize {
self.0.len()
}
/// Degree of the polynomial.
/// Panics on zero polynomial.
pub fn degree(&self) -> usize {
(0usize..self.len())
.rev()
.find(|&i| self[i].is_nonzero())
.expect("Zero polynomial")
}
/// Degree of the polynomial + 1.
fn degree_plus_one(&self) -> usize {
(0usize..self.len())
.rev()
.find(|&i| self[i].is_nonzero())
.map_or(0, |i| i + 1)
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Removes the coefficients in the range `range`.
fn drain<R: RangeBounds<usize>>(&mut self, range: R) {
self.0.drain(range);
}
/// Evaluates the polynomial at a point `x`.
pub fn eval(&self, x: F) -> F {
self.iter().rev().fold(F::ZERO, |acc, &c| acc * x + c)
}
/// Evaluates the polynomial at a point `x`, given the list of powers of `x`.
/// Assumes that `self.len() == x_pow.len()`.
pub fn eval_from_power(&self, x_pow: &[F]) -> F {
self.iter()
.zip(x_pow)
.fold(F::ZERO, |acc, (&c, &p)| acc + c * p)
}
/// Evaluates the polynomial on subgroup of `F^*` with a given FFT precomputation.
pub(crate) fn eval_domain(&self, fft_precomputation: &FftPrecomputation<F>) -> Vec<F> {
let domain_size = fft_precomputation.size();
if self.len() < domain_size {
// Need to pad the polynomial to have the same length as the domain.
fft_with_precomputation_power_of_2(
self.padded(domain_size).coeffs().to_vec().into(),
fft_precomputation,
)
.values
} else {
fft_with_precomputation_power_of_2(self.coeffs().to_vec().into(), fft_precomputation)
.values
}
}
/// Computes the interpolating polynomial of a list of `values` on a subgroup of `F^*`.
pub(crate) fn from_evaluations(
values: &[F],
fft_precomputation: &FftPrecomputation<F>,
) -> Self {
Self(ifft_with_precomputation_power_of_2(values.to_vec().into(), fft_precomputation).coeffs)
}
/// Leading coefficient.
pub fn lead(&self) -> F {
self.iter()
.rev()
.find(|x| x.is_nonzero())
.map_or(F::ZERO, |x| *x)
}
/// Reverse the order of the coefficients, not taking into account the leading zero coefficients.
fn rev(&self) -> Self {
let d = self.degree();
Self(self.0[..=d].iter().rev().copied().collect())
}
/// Negates the polynomial's coefficients.
pub fn neg(&self) -> Self {
Self(self.iter().map(|&x| -x).collect())
}
/// Multiply the polynomial's coefficients by a scalar.
pub(crate) fn scalar_mul(&self, c: F) -> Self {
Self(self.iter().map(|&x| c * x).collect())
}
/// Removes leading zero coefficients.
pub fn trim(&mut self) {
self.0.drain(self.degree_plus_one()..);
}
/// Polynomial addition.
pub fn add(&self, other: &Self) -> Self {
let (mut a, mut b) = (self.clone(), other.clone());
match a.len().cmp(&b.len()) {
Ordering::Less => a.pad(b.len()),
Ordering::Greater => b.pad(a.len()),
_ => (),
}
Self(a.iter().zip(b.iter()).map(|(&x, &y)| x + y).collect())
}
/// Zero-pad the coefficients to have a given length.
pub fn pad(&mut self, len: usize) {
self.trim();
assert!(self.len() <= len);
self.0.extend((self.len()..len).map(|_| F::ZERO));
}
/// Returns the zero-padded polynomial.
pub fn padded(&self, len: usize) -> Self {
let mut a = self.clone();
a.pad(len);
a
}
/// Polynomial multiplication.
pub fn mul(&self, b: &Self) -> Self {
if self.is_zero() || b.is_zero() {
return Self::zero(1);
}
let a_deg = self.degree();
let b_deg = b.degree();
let a_pad = self.padded(a_deg + b_deg + 1);
let b_pad = b.padded(a_deg + b_deg + 1);
let precomputation = fft_precompute(a_deg + b_deg + 1);
let a_evals = fft_with_precomputation_power_of_2(a_pad.0.to_vec().into(), &precomputation);
let b_evals = fft_with_precomputation_power_of_2(b_pad.0.to_vec().into(), &precomputation);
let mul_evals: Vec<F> = a_evals
.values
.iter()
.zip(b_evals.values.iter())
.map(|(&pa, &pb)| pa * pb)
.collect();
ifft_with_precomputation_power_of_2(mul_evals.to_vec().into(), &precomputation)
.coeffs
.into()
}
/// Polynomial long division.
/// Returns `(q,r)` the quotient and remainder of the polynomial division of `a` by `b`.
/// Generally slower that the equivalent function `Polynomial::polynomial_division`.
pub fn polynomial_long_division(&self, b: &Self) -> (Self, Self) {
let (a_degree, b_degree) = (self.degree(), b.degree());
if self.is_zero() {
(Self::zero(1), Self::empty())
} else if b.is_zero() {
panic!("Division by zero polynomial");
} else if a_degree < b_degree {
(Self::zero(1), self.clone())
} else {
// Now we know that self.degree() >= divisor.degree();
let mut quotient = Self::zero(a_degree - b_degree + 1);
let mut remainder = self.clone();
// Can unwrap here because we know self is not zero.
let divisor_leading_inv = b.lead().inverse();
while !remainder.is_zero() && remainder.degree() >= b_degree {
let cur_q_coeff = remainder.lead() * divisor_leading_inv;
let cur_q_degree = remainder.degree() - b_degree;
quotient[cur_q_degree] = cur_q_coeff;
for (i, &div_coeff) in b.iter().enumerate() {
remainder[cur_q_degree + i] =
remainder[cur_q_degree + i] - (cur_q_coeff * div_coeff);
}
remainder.trim();
}
(quotient, remainder)
}
}
/// Computes the inverse of `self` modulo `x^n`.
fn inv_mod_xn(&self, n: usize) -> Self {
assert!(self[0].is_nonzero(), "Inverse doesn't exist.");
let mut h = self.clone();
if h.len() < n {
h.pad(n);
}
let mut a = Self::empty();
a.0.push(h[0].inverse());
for i in 0..log2_ceil(n) {
let l = 1 << i;
let h0 = h[..l].to_vec().into();
let mut h1: Polynomial<F> = h[l..].to_vec().into();
let mut c = a.mul(&h0);
if l == c.len() {
c = Self::zero(1);
} else {
c.drain(0..l);
}
h1.trim();
let mut tmp = a.mul(&h1);
tmp = tmp.add(&c);
tmp.iter_mut().for_each(|x| *x = -(*x));
tmp.trim();
let mut b = a.mul(&tmp);
b.trim();
if b.len() > l {
b.drain(l..);
}
a.0.extend_from_slice(&b[..]);
}
a.drain(n..);
a
}
/// Polynomial division.
/// Returns `(q,r)` the quotient and remainder of the polynomial division of `a` by `b`.
/// Algorithm from http://people.csail.mit.edu/madhu/ST12/scribe/lect06.pdf
pub fn polynomial_division(&self, b: &Self) -> (Self, Self) {
let (a_degree, b_degree) = (self.degree(), b.degree());
if self.is_zero() {
(Self::zero(1), Self::empty())
} else if b.is_zero() {
panic!("Division by zero polynomial");
} else if a_degree < b_degree {
(Self::zero(1), self.clone())
} else if b_degree == 0 {
(self.scalar_mul(b[0].inverse()), Self::empty())
} else {
let rev_b = b.rev();
let rev_b_inv = rev_b.inv_mod_xn(a_degree - b_degree + 1);
let rev_q: Polynomial<F> = rev_b_inv
.mul(&self.rev()[..=a_degree - b_degree].to_vec().into())[..=a_degree - b_degree]
.to_vec()
.into();
let mut q = rev_q.rev();
let mut qb = q.mul(b);
qb.pad(self.len());
let mut r = self.add(&qb.neg());
q.trim();
r.trim();
(q, r)
}
}
// Divides a polynomial `a` by `Z_H = X^n - 1`. Assumes `Z_H | a`, otherwise result is meaningless.
pub fn divide_by_z_h(&self, n: usize) -> Self {
if self.is_zero() {
return self.clone();
}
let mut a_trim = self.clone();
a_trim.trim();
let g = F::MULTIPLICATIVE_GROUP_GENERATOR;
let mut g_pow = F::ONE;
// Multiply the i-th coefficient of `a` by `g^i`. Then `new_a(w^j) = old_a(g.w^j)`.
a_trim.iter_mut().for_each(|x| {
*x = (*x) * g_pow;
g_pow = g * g_pow;
});
let d = a_trim.degree();
let root = F::primitive_root_of_unity(log2_ceil(d + 1));
let precomputation = fft_precompute(d + 1);
// Equals to the evaluation of `a` on `{g.w^i}`.
let mut a_eval = a_trim.eval_domain(&precomputation);
// Compute the denominators `1/(g^n.w^(n*i) - 1)` using batch inversion.
let denominator_g = g.exp_usize(n);
let root_n = root.exp_usize(n);
let mut root_pow = F::ONE;
let denominators = (0..a_eval.len())
.map(|i| {
if i != 0 {
root_pow = root_pow * root_n;
}
denominator_g * root_pow - F::ONE
})
.collect::<Vec<_>>();
let denominators_inv = F::batch_multiplicative_inverse(&denominators);
// Divide every element of `a_eval` by the corresponding denominator.
// Then, `a_eval` is the evaluation of `a/Z_H` on `{g.w^i}`.
a_eval
.iter_mut()
.zip(denominators_inv.iter())
.for_each(|(x, &d)| {
*x = (*x) * d;
});
// `p` is the interpolating polynomial of `a_eval` on `{w^i}`.
let mut p = Self::from_evaluations(&a_eval, &precomputation);
// We need to scale it by `g^(-i)` to get the interpolating polynomial of `a_eval` on `{g.w^i}`,
// a.k.a `a/Z_H`.
let g_inv = g.inverse();
let mut g_inv_pow = F::ONE;
p.iter_mut().for_each(|x| {
*x = (*x) * g_inv_pow;
g_inv_pow = g_inv_pow * g_inv;
});
p
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::field::crandall_field::CrandallField;
use rand::{thread_rng, Rng};
use std::time::Instant;
#[test]
fn test_polynomial_multiplication() {
type F = CrandallField;
let mut rng = thread_rng();
let (a_deg, b_deg) = (rng.gen_range(1, 10_000), rng.gen_range(1, 10_000));
let a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
let b = Polynomial((0..b_deg).map(|_| F::rand()).collect());
let m1 = a.mul(&b);
let m2 = a.mul(&b);
for _ in 0..1000 {
let x = F::rand();
assert_eq!(m1.eval(x), a.eval(x) * b.eval(x));
assert_eq!(m2.eval(x), a.eval(x) * b.eval(x));
}
}
#[test]
fn test_inv_mod_xn() {
type F = CrandallField;
let mut rng = thread_rng();
let a_deg = rng.gen_range(1, 1_000);
let n = rng.gen_range(1, 1_000);
let a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
let b = a.inv_mod_xn(n);
let mut m = a.mul(&b);
m.drain(n..);
m.trim();
assert_eq!(
m,
Polynomial(vec![F::ONE]),
"a: {:#?}, b:{:#?}, n:{:#?}, m:{:#?}",
a,
b,
n,
m
);
}
#[test]
fn test_polynomial_long_division() {
type F = CrandallField;
let mut rng = thread_rng();
let (a_deg, b_deg) = (rng.gen_range(1, 10_000), rng.gen_range(1, 10_000));
let a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
let b = Polynomial((0..b_deg).map(|_| F::rand()).collect());
let (q, r) = a.polynomial_long_division(&b);
for _ in 0..1000 {
let x = F::rand();
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
}
}
#[test]
fn test_polynomial_division() {
type F = CrandallField;
let mut rng = thread_rng();
let (a_deg, b_deg) = (rng.gen_range(1, 10_000), rng.gen_range(1, 10_000));
let a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
let b = Polynomial((0..b_deg).map(|_| F::rand()).collect());
let (q, r) = a.polynomial_division(&b);
for _ in 0..1000 {
let x = F::rand();
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
}
}
#[test]
fn test_polynomial_division_by_constant() {
type F = CrandallField;
let mut rng = thread_rng();
let a_deg = rng.gen_range(1, 10_000);
let a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
let b = Polynomial::from(vec![F::rand()]);
let (q, r) = a.polynomial_division(&b);
for _ in 0..1000 {
let x = F::rand();
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
}
}
#[test]
fn test_division_by_z_h() {
type F = CrandallField;
let mut rng = thread_rng();
let a_deg = rng.gen_range(1, 10_000);
let n = rng.gen_range(1, a_deg);
let mut a = Polynomial((0..a_deg).map(|_| F::rand()).collect());
a.trim();
let z_h = {
let mut z_h_vec = vec![F::ZERO; n + 1];
z_h_vec[n] = F::ONE;
z_h_vec[0] = F::NEG_ONE;
Polynomial(z_h_vec)
};
let m = a.mul(&z_h);
let now = Instant::now();
let mut a_test = m.divide_by_z_h(n);
a_test.trim();
println!("Division time: {:?}", now.elapsed());
assert_eq!(a, a_test);
}
#[test]
fn divide_zero_poly_by_z_h() {
let zero_poly = Polynomial::<CrandallField>::empty();
zero_poly.divide_by_z_h(16);
}
// Test to see which polynomial division method is faster for divisions of the type
// `(X^n - 1)/(X - a)
#[test]
fn test_division_linear() {
type F = CrandallField;
let mut rng = thread_rng();
let l = 14;
let n = 1 << l;
let g = F::primitive_root_of_unity(l);
let xn_minus_one = {
let mut xn_min_one_vec = vec![F::ZERO; n + 1];
xn_min_one_vec[n] = F::ONE;
xn_min_one_vec[0] = F::NEG_ONE;
Polynomial(xn_min_one_vec)
};
let a = g.exp_usize(rng.gen_range(0, n));
let denom = Polynomial(vec![-a, F::ONE]);
let now = Instant::now();
xn_minus_one.polynomial_division(&denom);
println!("Division time: {:?}", now.elapsed());
let now = Instant::now();
xn_minus_one.polynomial_long_division(&denom);
println!("Division time: {:?}", now.elapsed());
}
#[test]
fn eq() {
type F = CrandallField;
assert_eq!(Polynomial::<F>(vec![]), Polynomial(vec![]));
assert_eq!(Polynomial::<F>(vec![F::ZERO]), Polynomial(vec![F::ZERO]));
assert_eq!(Polynomial::<F>(vec![]), Polynomial(vec![F::ZERO]));
assert_eq!(Polynomial::<F>(vec![F::ZERO]), Polynomial(vec![]));
assert_eq!(
Polynomial::<F>(vec![F::ZERO]),
Polynomial(vec![F::ZERO, F::ZERO])
);
assert_eq!(
Polynomial::<F>(vec![F::ONE]),
Polynomial(vec![F::ONE, F::ZERO])
);
assert_ne!(Polynomial::<F>(vec![]), Polynomial(vec![F::ONE]));
assert_ne!(
Polynomial::<F>(vec![F::ZERO]),
Polynomial(vec![F::ZERO, F::ONE])
);
assert_ne!(
Polynomial::<F>(vec![F::ZERO]),
Polynomial(vec![F::ONE, F::ZERO])
);
}
}

View File

@ -1,6 +1,7 @@
use crate::field::fft::{fft, ifft};
use crate::field::field::Field;
use crate::util::log2_strict;
use std::slice::Iter;
/// A polynomial in point-value form.
///
@ -35,6 +36,12 @@ impl<F: Field> PolynomialValues<F> {
}
}
impl<F: Field> From<Vec<F>> for PolynomialValues<F> {
fn from(values: Vec<F>) -> Self {
Self::new(values)
}
}
/// A polynomial in coefficient form.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct PolynomialCoeffs<F: Field> {