Merge branch 'main' of github.com:mir-protocol/plonky2 into non-inv

This commit is contained in:
Dmitry Vagner 2023-01-28 14:18:00 +08:00
commit aed617c1de
8 changed files with 951 additions and 1035 deletions

View File

@ -10,10 +10,8 @@ use crate::fri::proof::{
};
use crate::fri::structure::{FriBatchInfoTarget, FriInstanceInfoTarget, FriOpeningsTarget};
use crate::fri::{FriConfig, FriParams};
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::gates::gate::Gate;
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::gates::random_access::RandomAccessGate;
use crate::hash::hash_types::{MerkleCapTarget, RichField};
use crate::iop::ext_target::{flatten_target, ExtensionTarget};
@ -50,23 +48,11 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let coset_start = self.mul(start, x);
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
// `HighDegreeInterpolationGate` has degree `arity`, so we use the low-degree gate if
// the arity is too large.
if arity > self.config.max_quotient_degree_factor {
self.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
arity_bits,
coset_start,
&evals,
beta,
)
} else {
self.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
arity_bits,
coset_start,
&evals,
beta,
)
}
let interpolation_gate = <CosetInterpolationGate<F, D>>::with_max_degree(
arity_bits,
self.config.max_quotient_degree_factor,
);
self.interpolate_coset(interpolation_gate, coset_start, &evals, beta)
}
/// Make sure we have enough wires and routed wires to do the FRI checks efficiently. This check
@ -77,14 +63,13 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
&self.config,
max_fri_arity_bits.max(self.config.fri_config.cap_height),
);
let (interpolation_wires, interpolation_routed_wires) =
if 1 << max_fri_arity_bits > self.config.max_quotient_degree_factor {
let gate = LowDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
(gate.num_wires(), gate.num_routed_wires())
} else {
let gate = HighDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
(gate.num_wires(), gate.num_routed_wires())
};
let interpolation_gate = CosetInterpolationGate::<F, D>::with_max_degree(
max_fri_arity_bits,
self.config.max_quotient_degree_factor,
);
let interpolation_wires = interpolation_gate.num_wires();
let interpolation_routed_wires = interpolation_gate.num_routed_wires();
let min_wires = random_access.num_wires().max(interpolation_wires);
let min_routed_wires = random_access

View File

@ -0,0 +1,108 @@
use plonky2_field::extension::Extendable;
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub(crate) fn interpolate_coset(
&mut self,
gate: CosetInterpolationGate<F, D>,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let row = self.num_gates();
self.connect(coset_shift, Target::wire(row, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(v, ExtensionTarget::from_range(row, gate.wires_value(i)));
}
self.connect_extension(
evaluation_point,
ExtensionTarget::from_range(row, gate.wires_evaluation_point()),
);
let eval = ExtensionTarget::from_range(row, gate.wires_evaluation_value());
self.add_gate(gate, vec![]);
eval
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::field::extension::FieldExtension;
use crate::field::interpolation::interpolant;
use crate::field::types::{Field, Sample};
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
#[test]
fn test_interpolate() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
let config = CircuitConfig::standard_recursion_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let subgroup_bits = 2;
let len = 1 << subgroup_bits;
let coset_shift = F::rand();
let g = F::primitive_root_of_unity(subgroup_bits);
let points = F::cyclic_subgroup_coset_known_order(g, coset_shift, len);
let values = FF::rand_vec(len);
let homogeneous_points = points
.iter()
.zip(values.iter())
.map(|(&a, &b)| (<FF as FieldExtension<D>>::from_basefield(a), b))
.collect::<Vec<_>>();
let true_interpolant = interpolant(&homogeneous_points);
let z = FF::rand();
let true_eval = true_interpolant.eval(z);
let coset_shift_target = builder.constant(coset_shift);
let value_targets = values
.iter()
.map(|&v| (builder.constant_extension(v)))
.collect::<Vec<_>>();
let zt = builder.constant_extension(z);
let evals_coset_gates = (2..=4)
.map(|max_degree| {
builder.interpolate_coset(
CosetInterpolationGate::with_max_degree(subgroup_bits, max_degree),
coset_shift_target,
&value_targets,
zt,
)
})
.collect::<Vec<_>>();
let true_eval_target = builder.constant_extension(true_eval);
for &eval_coset_gate in evals_coset_gates.iter() {
builder.connect_extension(eval_coset_gate, true_eval_target);
}
let data = builder.build::<C>();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -1,6 +1,7 @@
pub mod arithmetic;
pub mod arithmetic_extension;
pub mod hash;
pub mod interpolation;
pub mod polynomial;
pub mod random_access;
pub mod range_check;

View File

@ -0,0 +1,828 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::marker::PhantomData;
use core::ops::Range;
use crate::field::extension::algebra::ExtensionAlgebra;
use crate::field::extension::{Extendable, FieldExtension, OEF};
use crate::field::interpolation::barycentric_weights;
use crate::field::types::Field;
use crate::gates::gate::Gate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::{ExtensionAlgebraTarget, ExtensionTarget};
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness, WitnessWrite};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: allows constraints of variable
/// degree, up to `1<<subgroup_bits`.
///
/// This gate has as routed wires
/// - the coset shift from subgroup H
/// - the values that the interpolated polynomial takes on the coset
/// - the evaluation point
///
/// The evaluation strategy is based on the observation that if P(X) is the interpolant of some
/// values over a coset and P'(X) is the interpolant of those values over the subgroup, then
/// P(X) = P'(X `shift`^{-1}). Interpolating P'(X) is preferable because when subgroup is fixed
/// then so are the Barycentric weights and both can be hardcoded into the constraint polynomials.
///
/// A full interpolation of N values corresponds to the evaluation of a degree-N polynomial. This
/// gate can however be configured with a bounded degree of at least 2 by introducing more
/// non-routed wires. Let x[] be the domain points, v[] be the values, w[] be the Barycentric
/// weights and z be the evaluation point. Define the sequences
///
/// p[0] = 1
/// p[i] = p[i - 1] * (z - x[i - 1])
/// e[0] = 0,
/// e[i] = e[i - 1] * (z - x[i - 1]) + w[i - 1] * v[i - 1] * p[i - 1]
///
/// Then e[N] is the final interpolated value. The non-routed wires hold every (d - 1)'th
/// intermediate value of p and e, starting at p[d] and e[d], where d is the gate degree.
#[derive(Clone, Debug)]
pub struct CosetInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
pub degree: usize,
pub barycentric_weights: Vec<F>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> CosetInterpolationGate<F, D> {
pub fn new(subgroup_bits: usize) -> Self {
Self::with_max_degree(subgroup_bits, 1 << subgroup_bits)
}
pub(crate) fn with_max_degree(subgroup_bits: usize, max_degree: usize) -> Self {
assert!(max_degree > 1, "need at least quadratic constraints");
let n_points = 1 << subgroup_bits;
// Number of intermediate values required to compute interpolation with degree bound
let n_intermediates = (n_points - 2) / (max_degree - 1);
// Find minimum degree such that (n_points - 2) / (degree - 1) < n_intermediates + 1
// Minimizing the degree this way allows the gate to be in a larger selector group
let degree = (n_points - 2) / (n_intermediates + 1) + 2;
let barycentric_weights = barycentric_weights(
&F::two_adic_subgroup(subgroup_bits)
.into_iter()
.map(|x| (x, F::ZERO))
.collect::<Vec<_>>(),
);
Self {
subgroup_bits,
degree,
barycentric_weights,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
/// Wire index of the coset shift.
pub(crate) fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
pub(crate) fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
pub(crate) fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
pub(crate) fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_intermediates(&self) -> usize {
self.start_evaluation_value() + D
}
pub fn num_routed_wires(&self) -> usize {
self.start_intermediates()
}
fn num_intermediates(&self) -> usize {
(self.num_points() - 2) / (self.degree() - 1)
}
/// The wires corresponding to the i'th intermediate evaluation.
fn wires_intermediate_eval(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_intermediates());
let start = self.start_intermediates() + D * i;
start..start + D
}
/// The wires corresponding to the i'th intermediate product.
fn wires_intermediate_prod(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_intermediates());
let start = self.start_intermediates() + D * (self.num_intermediates() + i);
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.start_intermediates() + D * (2 * self.num_intermediates() + 1)
}
/// Wire indices of the shifted point to evaluate the interpolant at.
fn wires_shifted_evaluation_point(&self) -> Range<usize> {
let start = self.start_intermediates() + D * 2 * self.num_intermediates();
start..start + D
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for CosetInterpolationGate<F, D> {
fn id(&self) -> String {
format!("{self:?}<D={D}>")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let shift = vars.local_wires[self.wire_shift()];
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let shifted_evaluation_point =
vars.get_local_ext_algebra(self.wires_shifted_evaluation_point());
constraints.extend(
(evaluation_point - shifted_evaluation_point.scalar_mul(shift)).to_basefield_array(),
);
let domain = F::two_adic_subgroup(self.subgroup_bits);
let values = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = &self.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate_ext_algebra(
&domain[..self.degree()],
&values[..self.degree()],
&weights[..self.degree()],
shifted_evaluation_point,
ExtensionAlgebra::ZERO,
ExtensionAlgebra::one(),
);
for i in 0..self.num_intermediates() {
let intermediate_eval = vars.get_local_ext_algebra(self.wires_intermediate_eval(i));
let intermediate_prod = vars.get_local_ext_algebra(self.wires_intermediate_prod(i));
constraints.extend((intermediate_eval - computed_eval).to_basefield_array());
constraints.extend((intermediate_prod - computed_prod).to_basefield_array());
let start_index = 1 + (self.degree() - 1) * (i + 1);
let end_index = (start_index + self.degree() - 1).min(self.num_points());
(computed_eval, computed_prod) = partial_interpolate_ext_algebra(
&domain[start_index..end_index],
&values[start_index..end_index],
&weights[start_index..end_index],
shifted_evaluation_point,
intermediate_eval,
intermediate_prod,
);
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
constraints.extend((evaluation_value - computed_eval).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let shift = vars.local_wires[self.wire_shift()];
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let shifted_evaluation_point = vars.get_local_ext(self.wires_shifted_evaluation_point());
yield_constr.many(
(evaluation_point - shifted_evaluation_point.scalar_mul(shift)).to_basefield_array(),
);
let domain = F::two_adic_subgroup(self.subgroup_bits);
let values = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = &self.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate(
&domain[..self.degree()],
&values[..self.degree()],
&weights[..self.degree()],
shifted_evaluation_point,
F::Extension::ZERO,
F::Extension::ONE,
);
for i in 0..self.num_intermediates() {
let intermediate_eval = vars.get_local_ext(self.wires_intermediate_eval(i));
let intermediate_prod = vars.get_local_ext(self.wires_intermediate_prod(i));
yield_constr.many((intermediate_eval - computed_eval).to_basefield_array());
yield_constr.many((intermediate_prod - computed_prod).to_basefield_array());
let start_index = 1 + (self.degree() - 1) * (i + 1);
let end_index = (start_index + self.degree() - 1).min(self.num_points());
(computed_eval, computed_prod) = partial_interpolate(
&domain[start_index..end_index],
&values[start_index..end_index],
&weights[start_index..end_index],
shifted_evaluation_point,
intermediate_eval,
intermediate_prod,
);
}
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
yield_constr.many((evaluation_value - computed_eval).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let shift = vars.local_wires[self.wire_shift()];
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let shifted_evaluation_point =
vars.get_local_ext_algebra(self.wires_shifted_evaluation_point());
let neg_one = builder.neg_one();
let neg_shift = builder.scalar_mul_ext(neg_one, shift);
constraints.extend(
builder
.scalar_mul_add_ext_algebra(neg_shift, shifted_evaluation_point, evaluation_point)
.to_ext_target_array(),
);
let domain = F::two_adic_subgroup(self.subgroup_bits);
let values = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = &self.barycentric_weights;
let initial_eval = builder.zero_ext_algebra();
let initial_prod = builder.constant_ext_algebra(F::Extension::ONE.into());
let (mut computed_eval, mut computed_prod) = partial_interpolate_ext_algebra_target(
builder,
&domain[..self.degree()],
&values[..self.degree()],
&weights[..self.degree()],
shifted_evaluation_point,
initial_eval,
initial_prod,
);
for i in 0..self.num_intermediates() {
let intermediate_eval = vars.get_local_ext_algebra(self.wires_intermediate_eval(i));
let intermediate_prod = vars.get_local_ext_algebra(self.wires_intermediate_prod(i));
constraints.extend(
builder
.sub_ext_algebra(intermediate_eval, computed_eval)
.to_ext_target_array(),
);
constraints.extend(
builder
.sub_ext_algebra(intermediate_prod, computed_prod)
.to_ext_target_array(),
);
let start_index = 1 + (self.degree() - 1) * (i + 1);
let end_index = (start_index + self.degree() - 1).min(self.num_points());
(computed_eval, computed_prod) = partial_interpolate_ext_algebra_target(
builder,
&domain[start_index..end_index],
&values[start_index..end_index],
&weights[start_index..end_index],
shifted_evaluation_point,
intermediate_eval,
intermediate_prod,
);
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_eval)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D>::new(row, self.clone());
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
self.degree
}
fn num_constraints(&self) -> usize {
// D constraints to check for consistency of the shifted evaluation point, plus D
// constraints for the evaluation value.
D + D + 2 * D * self.num_intermediates()
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: CosetInterpolationGate<F, D>,
interpolation_domain: Vec<F>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGenerator<F, D> {
fn new(row: usize, gate: CosetInterpolationGate<F, D>) -> Self {
let interpolation_domain = F::two_adic_subgroup(gate.subgroup_bits);
InterpolationGenerator {
row,
gate,
interpolation_domain,
_phantom: PhantomData,
}
}
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
let shift = get_local_wire(self.gate.wire_shift());
let shifted_evaluation_point = evaluation_point.scalar_mul(shift.inverse());
let degree = self.gate.degree();
out_buffer.set_ext_wires(
self.gate.wires_shifted_evaluation_point().map(local_wire),
shifted_evaluation_point,
);
let domain = &self.interpolation_domain;
let values = (0..self.gate.num_points())
.map(|i| get_local_ext(self.gate.wires_value(i)))
.collect::<Vec<_>>();
let weights = &self.gate.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate(
&domain[..degree],
&values[..degree],
&weights[..degree],
shifted_evaluation_point,
F::Extension::ZERO,
F::Extension::ONE,
);
for i in 0..self.gate.num_intermediates() {
let intermediate_eval_wires = self.gate.wires_intermediate_eval(i).map(local_wire);
let intermediate_prod_wires = self.gate.wires_intermediate_prod(i).map(local_wire);
out_buffer.set_ext_wires(intermediate_eval_wires, computed_eval);
out_buffer.set_ext_wires(intermediate_prod_wires, computed_prod);
let start_index = 1 + (degree - 1) * (i + 1);
let end_index = (start_index + degree - 1).min(self.gate.num_points());
(computed_eval, computed_prod) = partial_interpolate(
&domain[start_index..end_index],
&values[start_index..end_index],
&weights[start_index..end_index],
shifted_evaluation_point,
computed_eval,
computed_prod,
);
}
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, computed_eval);
}
}
/// Interpolate the polynomial defined by its values on an arbitrary domain at the given point `x`.
///
/// The domain lies in a base field while the values and evaluation point may be from an extension
/// field. The Barycentric weights are precomputed and taken as arguments.
pub fn interpolate_over_base_domain<F: Field + Extendable<D>, const D: usize>(
domain: &[F],
values: &[F::Extension],
barycentric_weights: &[F],
x: F::Extension,
) -> F::Extension {
let (result, _) = partial_interpolate(
domain,
values,
barycentric_weights,
x,
F::Extension::ZERO,
F::Extension::ONE,
);
result
}
/// Perform a partial interpolation of the polynomial defined by its values on an arbitrary domain.
///
/// The Barycentric algorithm to interpolate a polynomial at a given point `x` is a linear pass
/// over the sequence of domain points, values, and Barycentric weights which maintains two
/// accumulated values, a partial evaluation and a partial product. This partially updates the
/// accumulated values, so that starting with an initial evaluation of 0 and a partial evaluation
/// of 1 and running over the whole domain is a full interpolation.
fn partial_interpolate<F: Field + Extendable<D>, const D: usize>(
domain: &[F],
values: &[F::Extension],
barycentric_weights: &[F],
x: F::Extension,
initial_eval: F::Extension,
initial_partial_prod: F::Extension,
) -> (F::Extension, F::Extension) {
let n = domain.len();
assert_ne!(n, 0);
assert_eq!(n, values.len());
assert_eq!(n, barycentric_weights.len());
let weighted_values = values
.iter()
.zip(barycentric_weights.iter())
.map(|(&value, &weight)| value.scalar_mul(weight));
weighted_values.zip(domain.iter()).fold(
(initial_eval, initial_partial_prod),
|(eval, terms_partial_prod), (val, &x_i)| {
let term = x - x_i.into();
let next_eval = eval * term + val * terms_partial_prod;
let next_terms_partial_prod = terms_partial_prod * term;
(next_eval, next_terms_partial_prod)
},
)
}
fn partial_interpolate_ext_algebra<F: OEF<D>, const D: usize>(
domain: &[F::BaseField],
values: &[ExtensionAlgebra<F, D>],
barycentric_weights: &[F::BaseField],
x: ExtensionAlgebra<F, D>,
initial_eval: ExtensionAlgebra<F, D>,
initial_partial_prod: ExtensionAlgebra<F, D>,
) -> (ExtensionAlgebra<F, D>, ExtensionAlgebra<F, D>) {
let n = domain.len();
assert_ne!(n, 0);
assert_eq!(n, values.len());
assert_eq!(n, barycentric_weights.len());
let weighted_values = values
.iter()
.zip(barycentric_weights.iter())
.map(|(&value, &weight)| value.scalar_mul(F::from_basefield(weight)));
weighted_values.zip(domain.iter()).fold(
(initial_eval, initial_partial_prod),
|(eval, terms_partial_prod), (val, &x_i)| {
let term = x - F::from_basefield(x_i).into();
let next_eval = eval * term + val * terms_partial_prod;
let next_terms_partial_prod = terms_partial_prod * term;
(next_eval, next_terms_partial_prod)
},
)
}
fn partial_interpolate_ext_algebra_target<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
domain: &[F],
values: &[ExtensionAlgebraTarget<D>],
barycentric_weights: &[F],
point: ExtensionAlgebraTarget<D>,
initial_eval: ExtensionAlgebraTarget<D>,
initial_partial_prod: ExtensionAlgebraTarget<D>,
) -> (ExtensionAlgebraTarget<D>, ExtensionAlgebraTarget<D>) {
let n = values.len();
debug_assert!(n != 0);
debug_assert!(domain.len() == n);
debug_assert!(barycentric_weights.len() == n);
values
.iter()
.cloned()
.zip(domain.iter().cloned())
.zip(barycentric_weights.iter().cloned())
.fold(
(initial_eval, initial_partial_prod),
|(eval, partial_prod), ((val, x), weight)| {
let x_target = builder.constant_ext_algebra(F::Extension::from(x).into());
let weight_target = builder.constant_extension(F::Extension::from(weight));
let term = builder.sub_ext_algebra(point, x_target);
let weighted_val = builder.scalar_mul_ext_algebra(weight_target, val);
let new_eval = builder.mul_ext_algebra(eval, term);
let new_eval = builder.mul_add_ext_algebra(weighted_val, partial_prod, new_eval);
let new_partial_prod = builder.mul_ext_algebra(partial_prod, term);
(new_eval, new_partial_prod)
},
)
}
#[cfg(test)]
mod tests {
use core::iter::repeat_with;
use anyhow::Result;
use plonky2_field::polynomial::PolynomialValues;
use plonky2_util::log2_strict;
use super::*;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::types::{Field, Sample};
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
#[test]
fn test_degree_and_wires_minimized() {
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 2);
assert_eq!(gate.num_intermediates(), 6);
assert_eq!(gate.degree(), 2);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 3);
assert_eq!(gate.num_intermediates(), 3);
assert_eq!(gate.degree(), 3);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 4);
assert_eq!(gate.num_intermediates(), 2);
assert_eq!(gate.degree(), 4);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 5);
assert_eq!(gate.num_intermediates(), 1);
assert_eq!(gate.degree(), 5);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 6);
assert_eq!(gate.num_intermediates(), 1);
assert_eq!(gate.degree(), 5);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 7);
assert_eq!(gate.num_intermediates(), 1);
assert_eq!(gate.degree(), 5);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 3);
assert_eq!(gate.num_intermediates(), 7);
assert_eq!(gate.degree(), 3);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 6);
assert_eq!(gate.num_intermediates(), 2);
assert_eq!(gate.degree(), 6);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 8);
assert_eq!(gate.num_intermediates(), 2);
assert_eq!(gate.degree(), 6);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 9);
assert_eq!(gate.num_intermediates(), 1);
assert_eq!(gate.degree(), 9);
}
#[test]
fn wire_indices_degree2() {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 2,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_value(2), 9..13);
assert_eq!(gate.wires_value(3), 13..17);
assert_eq!(gate.wires_evaluation_point(), 17..21);
assert_eq!(gate.wires_evaluation_value(), 21..25);
assert_eq!(gate.wires_intermediate_eval(0), 25..29);
assert_eq!(gate.wires_intermediate_eval(1), 29..33);
assert_eq!(gate.wires_intermediate_prod(0), 33..37);
assert_eq!(gate.wires_intermediate_prod(1), 37..41);
assert_eq!(gate.wires_shifted_evaluation_point(), 41..45);
assert_eq!(gate.num_wires(), 45);
}
#[test]
fn wire_indices_degree_3() {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 3,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_value(2), 9..13);
assert_eq!(gate.wires_value(3), 13..17);
assert_eq!(gate.wires_evaluation_point(), 17..21);
assert_eq!(gate.wires_evaluation_value(), 21..25);
assert_eq!(gate.wires_intermediate_eval(0), 25..29);
assert_eq!(gate.wires_intermediate_prod(0), 29..33);
assert_eq!(gate.wires_shifted_evaluation_point(), 33..37);
assert_eq!(gate.num_wires(), 37);
}
#[test]
fn wire_indices_degree_n() {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 4,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_value(2), 9..13);
assert_eq!(gate.wires_value(3), 13..17);
assert_eq!(gate.wires_evaluation_point(), 17..21);
assert_eq!(gate.wires_evaluation_value(), 21..25);
assert_eq!(gate.wires_shifted_evaluation_point(), 25..29);
assert_eq!(gate.num_wires(), 29);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(CosetInterpolationGate::new(2));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
for degree in 2..=4 {
test_eval_fns::<F, C, _, D>(CosetInterpolationGate::with_max_degree(2, degree))?;
}
Ok(())
}
#[test]
fn test_gate_constraint() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(shift: F, values: PolynomialValues<FF>, eval_point: FF) -> Vec<FF> {
let domain = F::two_adic_subgroup(log2_strict(values.len()));
let shifted_eval_point =
<FF as FieldExtension<2>>::scalar_mul(&eval_point, shift.inverse());
let weights =
barycentric_weights(&domain.iter().map(|&x| (x, F::ZERO)).collect::<Vec<_>>());
let (intermediate_eval, intermediate_prod) = partial_interpolate::<_, D>(
&domain[..3],
&values.values[..3],
&weights[..3],
shifted_eval_point,
FF::ZERO,
FF::ONE,
);
let eval = interpolate_over_base_domain::<_, D>(
&domain,
&values.values,
&weights,
shifted_eval_point,
);
let mut v = vec![shift];
for val in values.values.iter() {
v.extend(val.0);
}
v.extend(eval_point.0);
v.extend(eval.0);
v.extend(intermediate_eval.0);
v.extend(intermediate_prod.0);
v.extend(shifted_eval_point.0);
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for InterpolationGate.
let shift = F::rand();
let values = PolynomialValues::new(repeat_with(FF::rand).take(4).collect());
let eval_point = FF::rand();
let gate = CosetInterpolationGate::<F, D>::with_max_degree(2, 3);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(shift, values, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
#[test]
fn test_num_wires_constraints() {
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 8);
assert_eq!(gate.num_wires(), 47);
assert_eq!(gate.num_constraints(), 12);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(3, 8);
assert_eq!(gate.num_wires(), 23);
assert_eq!(gate.num_constraints(), 4);
let gate = <CosetInterpolationGate<GoldilocksField, 2>>::with_max_degree(4, 16);
assert_eq!(gate.num_wires(), 39);
assert_eq!(gate.num_constraints(), 4);
}
}

View File

@ -1,360 +0,0 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::marker::PhantomData;
use core::ops::Range;
use crate::field::extension::algebra::PolynomialCoeffsAlgebra;
use crate::field::extension::{Extendable, FieldExtension};
use crate::field::interpolation::interpolant;
use crate::field::polynomial::PolynomialCoeffs;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness, WitnessWrite};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: allows constraints of variable
/// degree, up to `1<<subgroup_bits`.
/// The higher degree is a tradeoff for less gates (`eval_unfiltered_recursively` for
/// this version uses less gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.start_coeffs() + self.num_points() * D
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
/// The domain of the points we're interpolating.
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers().take(size).map(move |x| shift.scalar_mul(x))
}
/// The domain of the points we're interpolating.
fn coset_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
shift: ExtensionTarget<D>,
) -> Vec<ExtensionTarget<D>> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers()
.take(size)
.map(move |x| {
let subgroup_element = builder.constant(x);
builder.scalar_mul_ext(subgroup_element, shift)
})
.collect()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn id(&self) -> String {
format!("{self:?}<D={D}>")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffs::new(coeffs);
let coset = self.coset(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let coset = self.coset_ext_circuit(builder, vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
self.num_points()
}
fn num_constraints(&self) -> usize {
// num_points * D constraints to check for consistency between the coefficients and the
// point-value pairs, plus D constraints for the evaluation value.
self.num_points() * D + D
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: HighDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the interpolant.
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use super::*;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::types::{Field, Sample};
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
#[test]
fn wire_indices() {
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 1,
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_evaluation_point(), 9..13);
assert_eq!(gate.wires_evaluation_value(), 13..17);
assert_eq!(gate.wires_coeff(0), 17..21);
assert_eq!(gate.wires_coeff(1), 21..25);
assert_eq!(gate.num_wires(), 25);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(HighDegreeInterpolationGate::new(2))
}
#[test]
fn test_gate_constraint() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &HighDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for InterpolationGate.
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
let eval_point = FF::rand();
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}

View File

@ -1,178 +0,0 @@
use alloc::vec;
use core::ops::Range;
use crate::field::extension::Extendable;
use crate::gates::gate::Gate;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
/// Trait for gates which interpolate a polynomial, whose points are a (base field) coset of the multiplicative subgroup
/// with the given size, and whose values are extension field elements, given by input wires.
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
pub(crate) trait InterpolationGate<F: RichField + Extendable<D>, const D: usize>:
Gate<F, D> + Copy
{
fn new(subgroup_bits: usize) -> Self;
fn num_points(&self) -> usize;
/// Wire index of the coset shift.
fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_coeffs(&self) -> usize {
self.start_evaluation_value() + D
}
/// The number of routed wires required in the typical usage of this gate, where the points to
/// interpolate, the evaluation point, and the corresponding value are all routed.
fn num_routed_wires(&self) -> usize {
self.start_coeffs()
}
/// Wire indices of the interpolant's `i`th coefficient.
fn wires_coeff(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_coeffs() + i * D;
start..start + D
}
fn end_coeffs(&self) -> usize {
self.start_coeffs() + D * self.num_points()
}
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub(crate) fn interpolate_coset<G: InterpolationGate<F, D>>(
&mut self,
subgroup_bits: usize,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let gate = G::new(subgroup_bits);
let row = self.add_gate(gate, vec![]);
self.connect(coset_shift, Target::wire(row, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(v, ExtensionTarget::from_range(row, gate.wires_value(i)));
}
self.connect_extension(
evaluation_point,
ExtensionTarget::from_range(row, gate.wires_evaluation_point()),
);
ExtensionTarget::from_range(row, gate.wires_evaluation_value())
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::field::extension::FieldExtension;
use crate::field::interpolation::interpolant;
use crate::field::types::{Field, Sample};
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
#[test]
fn test_interpolate() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
let config = CircuitConfig::standard_recursion_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let subgroup_bits = 2;
let len = 1 << subgroup_bits;
let coset_shift = F::rand();
let g = F::primitive_root_of_unity(subgroup_bits);
let points = F::cyclic_subgroup_coset_known_order(g, coset_shift, len);
let values = FF::rand_vec(len);
let homogeneous_points = points
.iter()
.zip(values.iter())
.map(|(&a, &b)| (<FF as FieldExtension<D>>::from_basefield(a), b))
.collect::<Vec<_>>();
let true_interpolant = interpolant(&homogeneous_points);
let z = FF::rand();
let true_eval = true_interpolant.eval(z);
let coset_shift_target = builder.constant(coset_shift);
let value_targets = values
.iter()
.map(|&v| (builder.constant_extension(v)))
.collect::<Vec<_>>();
let zt = builder.constant_extension(z);
let eval_hd = builder.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let eval_ld = builder.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let true_eval_target = builder.constant_extension(true_eval);
builder.connect_extension(eval_hd, true_eval_target);
builder.connect_extension(eval_ld, true_eval_target);
let data = builder.build::<C>();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -1,466 +0,0 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::marker::PhantomData;
use core::ops::Range;
use crate::field::extension::algebra::PolynomialCoeffsAlgebra;
use crate::field::extension::{Extendable, FieldExtension};
use crate::field::interpolation::interpolant;
use crate::field::polynomial::PolynomialCoeffs;
use crate::field::types::Field;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness, WitnessWrite};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: all constraints are degree <= 2.
/// The lower degree is a tradeoff for more gates (`eval_unfiltered_recursively` for
/// this version uses more gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for LowDegreeInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
/// `powers_shift(i)` is the wire index of `wire_shift^i`.
pub fn powers_shift(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.end_coeffs() + i - 2
}
/// `powers_evalutation_point(i)` is the wire index of `evalutation_point^i`.
pub fn powers_evaluation_point(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_evaluation_point(self.num_points() - 1).end
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
fn id(&self) -> String {
format!("{self:?}<D={D}>")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
}
powers_shift.insert(0, F::Extension::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let altered_interpolant = PolynomialCoeffsAlgebra::new(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = altered_interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
yield_constr.one(powers_shift[i - 1] * shift - powers_shift[i]);
}
powers_shift.insert(0, F::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffs::new(coeffs);
let altered_interpolant = PolynomialCoeffs::new(altered_coeffs);
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = altered_interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
yield_constr.many(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(builder.mul_sub_extension(
powers_shift[i - 1],
shift,
powers_shift[i],
));
}
powers_shift.insert(0, builder.one_extension());
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let altered_interpolant = PolynomialCoeffsExtAlgebraTarget(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let point = builder.constant_extension(point);
let computed_value = altered_interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
let neg_one_ext = builder.neg_one_extension();
let neg_new_power =
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
let constraint = builder.mul_add_ext_algebra(
evaluation_point,
evaluation_point_powers[i - 1],
neg_new_power,
);
constraints.extend(constraint.to_ext_target_array());
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value =
interpolant.eval_with_powers(builder, &evaluation_point_powers);
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
// `num_points * D` constraints to check for consistency between the coefficients and the
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
// to check power constraints for evaluation point and shift.
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: LowDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
let wire_shift = get_local_wire(self.gate.wire_shift());
for (i, power) in wire_shift
.powers()
.take(self.gate.num_points())
.enumerate()
.skip(2)
{
out_buffer.set_wire(local_wire(self.gate.powers_shift(i)), power);
}
// Compute the interpolant.
let points = self.gate.coset(wire_shift);
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
for (i, power) in evaluation_point
.powers()
.take(self.gate.num_points())
.enumerate()
.skip(2)
{
out_buffer.set_extension_target(
ExtensionTarget::from_range(self.row, self.gate.powers_evaluation_point(i)),
power,
);
}
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::field::extension::quadratic::QuadraticExtension;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::polynomial::PolynomialCoeffs;
use crate::field::types::{Field, Sample};
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::vars::EvaluationVars;
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(LowDegreeInterpolationGate::new(4))
}
#[test]
fn test_gate_constraint() {
type F = GoldilocksField;
type FF = QuadraticExtension<GoldilocksField>;
const D: usize = 2;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &LowDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.extend(shift.powers().skip(2).take(gate.num_points() - 2));
v.extend(
eval_point
.powers()
.skip(2)
.take(gate.num_points() - 2)
.flat_map(|ff| ff.0),
);
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for LowDegreeInterpolationGate.
let subgroup_bits = 4;
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(FF::rand_vec(1 << subgroup_bits));
let eval_point = FF::rand();
let gate = LowDegreeInterpolationGate::<F, D>::new(subgroup_bits);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}

View File

@ -5,11 +5,9 @@ pub mod arithmetic_base;
pub mod arithmetic_extension;
pub mod base_sum;
pub mod constant;
pub mod coset_interpolation;
pub mod exponentiation;
pub mod gate;
pub mod high_degree_interpolation;
pub mod interpolation;
pub mod low_degree_interpolation;
pub mod multiplication_extension;
pub mod noop;
pub mod packed_util;