Remove InterpolationGate trait (#868)

This commit is contained in:
wborgeaud 2023-01-25 08:29:51 +01:00 committed by GitHub
parent 3bdb290746
commit 136cdd053f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 97 additions and 983 deletions

View File

@ -12,7 +12,6 @@ use crate::fri::structure::{FriBatchInfoTarget, FriInstanceInfoTarget, FriOpenin
use crate::fri::{FriConfig, FriParams};
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::random_access::RandomAccessGate;
use crate::hash::hash_types::{MerkleCapTarget, RichField};
use crate::iop::ext_target::{flatten_target, ExtensionTarget};

View File

@ -1,93 +1,23 @@
use alloc::vec;
use core::ops::Range;
use plonky2_field::extension::Extendable;
use crate::field::extension::Extendable;
use crate::gates::gate::Gate;
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
/// Trait for gates which interpolate a polynomial, whose points are a (base field) coset of the multiplicative subgroup
/// with the given size, and whose values are extension field elements, given by input wires.
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
pub(crate) trait InterpolationGate<F: RichField + Extendable<D>, const D: usize>:
Gate<F, D> + Copy
{
fn new(subgroup_bits: usize) -> Self;
fn num_points(&self) -> usize;
/// Wire index of the coset shift.
fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_coeffs(&self) -> usize {
self.start_evaluation_value() + D
}
/// The number of routed wires required in the typical usage of this gate, where the points to
/// interpolate, the evaluation point, and the corresponding value are all routed.
fn num_routed_wires(&self) -> usize {
self.start_coeffs()
}
/// Wire indices of the interpolant's `i`th coefficient.
fn wires_coeff(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_coeffs() + i * D;
start..start + D
}
fn end_coeffs(&self) -> usize {
self.start_coeffs() + D * self.num_points()
}
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub(crate) fn interpolate_coset<G: InterpolationGate<F, D>>(
pub(crate) fn interpolate_coset(
&mut self,
gate: G,
gate: CosetInterpolationGate<F, D>,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let row = self.add_gate(gate, vec![]);
let row = self.num_gates();
self.connect(coset_shift, Target::wire(row, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(v, ExtensionTarget::from_range(row, gate.wires_value(i)));
@ -97,7 +27,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
ExtensionTarget::from_range(row, gate.wires_evaluation_point()),
);
ExtensionTarget::from_range(row, gate.wires_evaluation_value())
let eval = ExtensionTarget::from_range(row, gate.wires_evaluation_value());
self.add_gate(gate, vec![]);
eval
}
}
@ -109,9 +42,6 @@ mod tests {
use crate::field::interpolation::interpolant;
use crate::field::types::{Field, Sample};
use crate::gates::coset_interpolation::CosetInterpolationGate;
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
@ -155,18 +85,6 @@ mod tests {
let zt = builder.constant_extension(z);
let eval_hd = builder.interpolate_coset(
HighDegreeInterpolationGate::new(subgroup_bits),
coset_shift_target,
&value_targets,
zt,
);
let eval_ld = builder.interpolate_coset(
LowDegreeInterpolationGate::new(subgroup_bits),
coset_shift_target,
&value_targets,
zt,
);
let evals_coset_gates = (2..=4)
.map(|max_degree| {
builder.interpolate_coset(
@ -178,8 +96,6 @@ mod tests {
})
.collect::<Vec<_>>();
let true_eval_target = builder.constant_extension(true_eval);
builder.connect_extension(eval_hd, true_eval_target);
builder.connect_extension(eval_ld, true_eval_target);
for &eval_coset_gate in evals_coset_gates.iter() {
builder.connect_extension(eval_coset_gate, true_eval_target);
}

View File

@ -1,6 +1,7 @@
pub mod arithmetic;
pub mod arithmetic_extension;
pub mod hash;
pub mod interpolation;
pub mod polynomial;
pub mod random_access;
pub mod range_check;

View File

@ -10,7 +10,6 @@ use crate::field::extension::{Extendable, FieldExtension, OEF};
use crate::field::interpolation::barycentric_weights;
use crate::field::types::Field;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::{ExtensionAlgebraTarget, ExtensionTarget};
@ -46,35 +45,19 @@ use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
///
/// Then e[N] is the final interpolated value. The non-routed wires hold every (d - 1)'th
/// intermediate value of p and e, starting at p[d] and e[d], where d is the gate degree.
#[derive(Copy, Clone, Debug)]
#[derive(Clone, Debug)]
pub struct CosetInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
pub degree: usize,
pub barycentric_weights: Vec<F>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for CosetInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
impl<F: RichField + Extendable<D>, const D: usize> CosetInterpolationGate<F, D> {
pub fn new(subgroup_bits: usize) -> Self {
Self::with_max_degree(subgroup_bits, 1 << subgroup_bits)
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
/// Wire indices of the interpolant's `i`th coefficient.
fn wires_coeff(&self, _i: usize) -> Range<usize> {
panic!("No coefficient wires");
}
fn end_coeffs(&self) -> usize {
self.start_coeffs()
}
}
impl<F: RichField + Extendable<D>, const D: usize> CosetInterpolationGate<F, D> {
pub(crate) fn with_max_degree(subgroup_bits: usize, max_degree: usize) -> Self {
assert!(max_degree > 1, "need at least quadratic constraints");
@ -87,13 +70,69 @@ impl<F: RichField + Extendable<D>, const D: usize> CosetInterpolationGate<F, D>
// Minimizing the degree this way allows the gate to be in a larger selector group
let degree = (n_points - 2) / (n_intermediates + 1) + 2;
let barycentric_weights = barycentric_weights(
&F::two_adic_subgroup(subgroup_bits)
.into_iter()
.map(|x| (x, F::ZERO))
.collect::<Vec<_>>(),
);
Self {
subgroup_bits,
degree,
barycentric_weights,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
/// Wire index of the coset shift.
pub(crate) fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
pub(crate) fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
pub(crate) fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
pub(crate) fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_intermediates(&self) -> usize {
self.start_evaluation_value() + D
}
pub fn num_routed_wires(&self) -> usize {
self.start_intermediates()
}
fn num_intermediates(&self) -> usize {
(self.num_points() - 2) / (self.degree() - 1)
}
@ -101,34 +140,25 @@ impl<F: RichField + Extendable<D>, const D: usize> CosetInterpolationGate<F, D>
/// The wires corresponding to the i'th intermediate evaluation.
fn wires_intermediate_eval(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_intermediates());
let start = self.end_coeffs() + D * i;
let start = self.start_intermediates() + D * i;
start..start + D
}
/// The wires corresponding to the i'th intermediate product.
fn wires_intermediate_prod(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_intermediates());
let start = self.end_coeffs() + D * (self.num_intermediates() + i);
let start = self.start_intermediates() + D * (self.num_intermediates() + i);
start..start + D
}
fn barycentric_weights(&self) -> Vec<F> {
barycentric_weights(
&F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.map(|x| (x, F::ZERO))
.collect::<Vec<_>>(),
)
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.end_coeffs() + D * (2 * self.num_intermediates() + 1)
self.start_intermediates() + D * (2 * self.num_intermediates() + 1)
}
/// Wire indices of the shifted point to evaluate the interpolant at.
fn wires_shifted_evaluation_point(&self) -> Range<usize> {
let start = self.end_coeffs() + D * 2 * self.num_intermediates();
let start = self.start_intermediates() + D * 2 * self.num_intermediates();
start..start + D
}
}
@ -153,7 +183,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for CosetInterpola
let values = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = self.barycentric_weights();
let weights = &self.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate_ext_algebra(
&domain[..self.degree()],
@ -204,7 +234,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for CosetInterpola
let values = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = self.barycentric_weights();
let weights = &self.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate(
&domain[..self.degree()],
@ -261,7 +291,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for CosetInterpola
let values = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_value(i)))
.collect::<Vec<_>>();
let weights = self.barycentric_weights();
let weights = &self.barycentric_weights;
let initial_eval = builder.zero_ext_algebra();
let initial_prod = builder.constant_ext_algebra(F::Extension::ONE.into());
@ -313,7 +343,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for CosetInterpola
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D>::new(row, *self);
let gen = InterpolationGenerator::<F, D>::new(row, self.clone());
vec![Box::new(gen.adapter())]
}
@ -341,19 +371,16 @@ struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: CosetInterpolationGate<F, D>,
interpolation_domain: Vec<F>,
interpolation_weights: Vec<F>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGenerator<F, D> {
fn new(row: usize, gate: CosetInterpolationGate<F, D>) -> Self {
let interpolation_domain = F::two_adic_subgroup(gate.subgroup_bits);
let interpolation_weights = gate.barycentric_weights();
InterpolationGenerator {
row,
gate,
interpolation_domain,
interpolation_weights,
_phantom: PhantomData,
}
}
@ -412,7 +439,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
let values = (0..self.gate.num_points())
.map(|i| get_local_ext(self.gate.wires_value(i)))
.collect::<Vec<_>>();
let weights = &self.interpolation_weights;
let weights = &self.gate.barycentric_weights;
let (mut computed_eval, mut computed_prod) = partial_interpolate(
&domain[..degree],
@ -629,6 +656,12 @@ mod tests {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 2,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};
@ -654,6 +687,12 @@ mod tests {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 3,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};
@ -677,6 +716,12 @@ mod tests {
let gate = CosetInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 2,
degree: 4,
barycentric_weights: barycentric_weights(
&GoldilocksField::two_adic_subgroup(2)
.into_iter()
.map(|x| (x, GoldilocksField::ZERO))
.collect::<Vec<_>>(),
),
_phantom: PhantomData,
};

View File

@ -1,371 +0,0 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::marker::PhantomData;
use core::ops::Range;
use crate::field::extension::algebra::PolynomialCoeffsAlgebra;
use crate::field::extension::{Extendable, FieldExtension};
use crate::field::interpolation::interpolant;
use crate::field::polynomial::PolynomialCoeffs;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness, WitnessWrite};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: allows constraints of variable
/// degree, up to `1<<subgroup_bits`.
/// The higher degree is a tradeoff for less gates (`eval_unfiltered_recursively` for
/// this version uses less gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.start_coeffs() + self.num_points() * D
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
/// The domain of the points we're interpolating.
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers().take(size).map(move |x| shift.scalar_mul(x))
}
/// The domain of the points we're interpolating.
fn coset_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
shift: ExtensionTarget<D>,
) -> Vec<ExtensionTarget<D>> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers()
.take(size)
.map(move |x| {
let subgroup_element = builder.constant(x);
builder.scalar_mul_ext(subgroup_element, shift)
})
.collect()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn id(&self) -> String {
format!("{self:?}<D={D}>")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffs::new(coeffs);
let coset = self.coset(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let coset = self.coset_ext_circuit(builder, vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
self.num_points()
}
fn num_constraints(&self) -> usize {
// num_points * D constraints to check for consistency between the coefficients and the
// point-value pairs, plus D constraints for the evaluation value.
self.num_points() * D + D
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: HighDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the interpolant.
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use super::*;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::types::{Field, Sample};
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
#[test]
fn wire_indices() {
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 1,
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_evaluation_point(), 9..13);
assert_eq!(gate.wires_evaluation_value(), 13..17);
assert_eq!(gate.wires_coeff(0), 17..21);
assert_eq!(gate.wires_coeff(1), 21..25);
assert_eq!(gate.num_wires(), 25);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(HighDegreeInterpolationGate::new(2))
}
#[test]
fn test_gate_constraint() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &HighDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for InterpolationGate.
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
let eval_point = FF::rand();
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
#[test]
fn test_num_wires_constraints() {
let gate = <HighDegreeInterpolationGate<GoldilocksField, 2>>::new(3);
assert_eq!(gate.num_wires(), 37);
assert_eq!(gate.num_constraints(), 18);
let gate = <HighDegreeInterpolationGate<GoldilocksField, 2>>::new(4);
assert_eq!(gate.num_wires(), 69);
assert_eq!(gate.num_constraints(), 34);
}
}

View File

@ -1,473 +0,0 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::marker::PhantomData;
use core::ops::Range;
use crate::field::extension::algebra::PolynomialCoeffsAlgebra;
use crate::field::extension::{Extendable, FieldExtension};
use crate::field::interpolation::interpolant;
use crate::field::polynomial::PolynomialCoeffs;
use crate::field::types::Field;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness, WitnessWrite};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: all constraints are degree <= 2.
/// The lower degree is a tradeoff for more gates (`eval_unfiltered_recursively` for
/// this version uses more gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for LowDegreeInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
/// `powers_shift(i)` is the wire index of `wire_shift^i`.
pub fn powers_shift(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.end_coeffs() + i - 2
}
/// `powers_evalutation_point(i)` is the wire index of `evalutation_point^i`.
pub fn powers_evaluation_point(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_evaluation_point(self.num_points() - 1).end
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
fn id(&self) -> String {
format!("{self:?}<D={D}>")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
}
powers_shift.insert(0, F::Extension::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let altered_interpolant = PolynomialCoeffsAlgebra::new(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = altered_interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
yield_constr.one(powers_shift[i - 1] * shift - powers_shift[i]);
}
powers_shift.insert(0, F::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffs::new(coeffs);
let altered_interpolant = PolynomialCoeffs::new(altered_coeffs);
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = altered_interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
yield_constr.many(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(builder.mul_sub_extension(
powers_shift[i - 1],
shift,
powers_shift[i],
));
}
powers_shift.insert(0, builder.one_extension());
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_shift)
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let altered_interpolant = PolynomialCoeffsExtAlgebraTarget(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let point = builder.constant_extension(point);
let computed_value = altered_interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
let neg_one_ext = builder.neg_one_extension();
let neg_new_power =
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
let constraint = builder.mul_add_ext_algebra(
evaluation_point,
evaluation_point_powers[i - 1],
neg_new_power,
);
constraints.extend(constraint.to_ext_target_array());
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value =
interpolant.eval_with_powers(builder, &evaluation_point_powers);
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
// `num_points * D` constraints to check for consistency between the coefficients and the
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
// to check power constraints for evaluation point and shift.
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: LowDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
let wire_shift = get_local_wire(self.gate.wire_shift());
for (i, power) in wire_shift
.powers()
.take(self.gate.num_points())
.enumerate()
.skip(2)
{
out_buffer.set_wire(local_wire(self.gate.powers_shift(i)), power);
}
// Compute the interpolant.
let points = self.gate.coset(wire_shift);
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
for (i, power) in evaluation_point
.powers()
.take(self.gate.num_points())
.enumerate()
.skip(2)
{
out_buffer.set_extension_target(
ExtensionTarget::from_range(self.row, self.gate.powers_evaluation_point(i)),
power,
);
}
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::field::extension::quadratic::QuadraticExtension;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::polynomial::PolynomialCoeffs;
use crate::field::types::{Field, Sample};
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::vars::EvaluationVars;
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(LowDegreeInterpolationGate::new(4))
}
#[test]
fn test_gate_constraint() {
type F = GoldilocksField;
type FF = QuadraticExtension<GoldilocksField>;
const D: usize = 2;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &LowDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.extend(shift.powers().skip(2).take(gate.num_points() - 2));
v.extend(
eval_point
.powers()
.skip(2)
.take(gate.num_points() - 2)
.flat_map(|ff| ff.0),
);
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for LowDegreeInterpolationGate.
let subgroup_bits = 4;
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(FF::rand_vec(1 << subgroup_bits));
let eval_point = FF::rand();
let gate = LowDegreeInterpolationGate::<F, D>::new(subgroup_bits);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
#[test]
fn test_num_wires_constraints() {
let gate = <LowDegreeInterpolationGate<GoldilocksField, 2>>::new(4);
assert_eq!(gate.num_wires(), 111);
assert_eq!(gate.num_constraints(), 76);
}
}

View File

@ -8,9 +8,6 @@ pub mod constant;
pub mod coset_interpolation;
pub mod exponentiation;
pub mod gate;
pub mod high_degree_interpolation;
pub mod interpolation;
pub mod low_degree_interpolation;
pub mod multiplication_extension;
pub mod noop;
pub mod packed_util;