Merge branch 'main' into add_routed_wires

# Conflicts:
#	src/gadgets/arithmetic.rs
This commit is contained in:
wborgeaud 2021-06-30 08:30:10 +02:00
commit a017e79f65
18 changed files with 516 additions and 228 deletions

View File

@ -17,10 +17,11 @@ use crate::gates::noop::NoopGate;
use crate::generator::{CopyGenerator, WitnessGenerator};
use crate::hash::hash_n_to_hash;
use crate::permutation_argument::TargetPartitions;
use crate::plonk_common::PlonkPolynomials;
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::PolynomialValues;
use crate::target::Target;
use crate::util::{log2_strict, transpose};
use crate::util::{log2_strict, transpose, transpose_poly_values};
use crate::wire::Wire;
pub struct CircuitBuilder<F: Extendable<D>, const D: usize> {
@ -239,12 +240,11 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
fn constant_polys(&self, gates: &[PrefixedGate<F, D>]) -> Vec<PolynomialValues<F>> {
let num_constants = gates
.iter()
.map(|gate| gate.gate.0.num_constants() + gate.prefix.len())
.max()
.unwrap();
fn constant_polys(
&self,
gates: &[PrefixedGate<F, D>],
num_constants: usize,
) -> Vec<PolynomialValues<F>> {
let constants_per_gate = self
.gate_instances
.iter()
@ -268,7 +268,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.collect()
}
fn sigma_vecs(&self, k_is: &[F]) -> Vec<PolynomialValues<F>> {
fn sigma_vecs(&self, k_is: &[F], subgroup: &[F]) -> Vec<PolynomialValues<F>> {
let degree = self.gate_instances.len();
let degree_log = log2_strict(degree);
let mut target_partitions = TargetPartitions::new();
@ -288,7 +288,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
let wire_partitions = target_partitions.to_wire_partitions();
wire_partitions.get_sigma_polys(degree_log, k_is)
wire_partitions.get_sigma_polys(degree_log, k_is, subgroup)
}
/// Builds a "full circuit", with both prover and verifier data.
@ -303,35 +303,34 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
info!("degree after blinding & padding: {}", degree);
let gates = self.gates.iter().cloned().collect();
let gate_tree = Tree::from_gates(gates);
let (gate_tree, max_filtered_constraint_degree, num_constants) = Tree::from_gates(gates);
let prefixed_gates = PrefixedGate::from_tree(gate_tree);
let constant_vecs = self.constant_polys(&prefixed_gates);
let constants_commitment = ListPolynomialCommitment::new(
constant_vecs.into_iter().map(|v| v.ifft()).collect(),
self.config.fri_config.rate_bits,
false,
);
let degree_bits = log2_strict(degree);
let subgroup = F::two_adic_subgroup(degree_bits);
let constant_vecs = self.constant_polys(&prefixed_gates, num_constants);
let k_is = get_unique_coset_shifts(degree, self.config.num_routed_wires);
let sigma_vecs = self.sigma_vecs(&k_is);
let sigmas_commitment = ListPolynomialCommitment::new(
sigma_vecs.into_iter().map(|v| v.ifft()).collect(),
let sigma_vecs = self.sigma_vecs(&k_is, &subgroup);
let constants_sigmas_vecs = [constant_vecs, sigma_vecs.clone()].concat();
let constants_sigmas_commitment = ListPolynomialCommitment::new(
constants_sigmas_vecs,
self.config.fri_config.rate_bits,
false,
PlonkPolynomials::CONSTANTS_SIGMAS.blinding,
);
let constants_root = constants_commitment.merkle_tree.root;
let sigmas_root = sigmas_commitment.merkle_tree.root;
let constants_sigmas_root = constants_sigmas_commitment.merkle_tree.root;
let verifier_only = VerifierOnlyCircuitData {
constants_root,
sigmas_root,
constants_sigmas_root,
};
let prover_only = ProverOnlyCircuitData {
generators: self.generators,
constants_commitment,
sigmas_commitment,
constants_sigmas_commitment,
sigmas: transpose_poly_values(sigma_vecs),
subgroup,
copy_constraints: self.copy_constraints,
gate_instances: self.gate_instances,
};
@ -347,17 +346,20 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.max()
.expect("No gates?");
let degree_bits = log2_strict(degree);
// TODO: This should also include an encoding of gate constraints.
let circuit_digest_parts = [constants_root.elements, sigmas_root.elements];
let circuit_digest_parts = [
constants_sigmas_root.elements.to_vec(),
vec![/* Add other circuit data here */],
];
let circuit_digest = hash_n_to_hash(circuit_digest_parts.concat(), false);
let common = CommonCircuitData {
config: self.config,
degree_bits,
gates: prefixed_gates,
max_filtered_constraint_degree,
num_gate_constraints,
num_constants,
k_is,
circuit_digest,
};

View File

@ -1,3 +1,5 @@
use std::ops::Range;
use anyhow::Result;
use crate::field::extension_field::Extendable;
@ -116,10 +118,12 @@ impl<F: Extendable<D>, const D: usize> VerifierCircuitData<F, D> {
/// Circuit data required by the prover, but not the verifier.
pub(crate) struct ProverOnlyCircuitData<F: Extendable<D>, const D: usize> {
pub generators: Vec<Box<dyn WitnessGenerator<F>>>,
/// Commitments to the constants polynomial.
pub constants_commitment: ListPolynomialCommitment<F>,
/// Commitments to the sigma polynomial.
pub sigmas_commitment: ListPolynomialCommitment<F>,
/// Commitments to the constants polynomials and sigma polynomials.
pub constants_sigmas_commitment: ListPolynomialCommitment<F>,
/// The transpose of the list of sigma polynomials.
pub sigmas: Vec<Vec<F>>,
/// Subgroup of order `degree`.
pub subgroup: Vec<F>,
/// The circuit's copy constraints.
pub copy_constraints: Vec<(Target, Target)>,
/// The concrete placement of each gate in the circuit.
@ -128,15 +132,12 @@ pub(crate) struct ProverOnlyCircuitData<F: Extendable<D>, const D: usize> {
/// Circuit data required by the verifier, but not the prover.
pub(crate) struct VerifierOnlyCircuitData<F: Field> {
/// A commitment to each constant polynomial.
pub(crate) constants_root: Hash<F>,
/// A commitment to each permutation polynomial.
pub(crate) sigmas_root: Hash<F>,
/// A commitment to each constant polynomial and each permutation polynomial.
pub(crate) constants_sigmas_root: Hash<F>,
}
/// Circuit data required by both the prover and the verifier.
pub(crate) struct CommonCircuitData<F: Extendable<D>, const D: usize> {
pub struct CommonCircuitData<F: Extendable<D>, const D: usize> {
pub(crate) config: CircuitConfig,
pub(crate) degree_bits: usize,
@ -144,9 +145,15 @@ pub(crate) struct CommonCircuitData<F: Extendable<D>, const D: usize> {
/// The types of gates used in this circuit, along with their prefixes.
pub(crate) gates: Vec<PrefixedGate<F, D>>,
/// The maximum degree of a filter times a constraint by any gate.
pub(crate) max_filtered_constraint_degree: usize,
/// The largest number of constraints imposed by any gate.
pub(crate) num_gate_constraints: usize,
/// The number of constant wires.
pub(crate) num_constants: usize,
/// The `{k_i}` valued used in `S_ID_i` in Plonk's permutation argument.
pub(crate) k_is: Vec<F>,
@ -177,13 +184,23 @@ impl<F: Extendable<D>, const D: usize> CommonCircuitData<F, D> {
}
pub fn quotient_degree(&self) -> usize {
self.constraint_degree() - 1
(self.max_filtered_constraint_degree - 1) * self.degree()
}
pub fn total_constraints(&self) -> usize {
// 2 constraints for each Z check.
self.config.num_challenges * 2 + self.num_gate_constraints
}
/// Range of the constants polynomials in the `constants_sigmas_commitment`.
pub fn constants_range(&self) -> Range<usize> {
0..self.num_constants
}
/// Range of the sigma polynomials in the `constants_sigmas_commitment`.
pub fn sigmas_range(&self) -> Range<usize> {
self.num_constants..self.num_constants + self.config.num_routed_wires
}
}
/// The `Target` version of `VerifierCircuitData`, for use inside recursive circuits. Note that this

View File

@ -194,7 +194,7 @@ impl DivAssign for QuadraticCrandallField {
#[cfg(test)]
mod tests {
use crate::field::extension_field::quadratic::QuadraticCrandallField;
use crate::field::extension_field::{FieldExtension, Frobenius, OEF};
use crate::field::extension_field::{FieldExtension, Frobenius};
use crate::field::field::Field;
#[test]

View File

@ -44,12 +44,14 @@ pub(crate) fn fft_precompute<F: Field>(degree: usize) -> FftPrecomputation<F> {
let degree_log = log2_ceil(degree);
let mut subgroups_rev = Vec::new();
for i in 0..=degree_log {
let g_i = F::primitive_root_of_unity(i);
let subgroup = F::cyclic_subgroup_known_order(g_i, 1 << i);
let mut subgroup = F::two_adic_subgroup(degree_log);
for _i in 0..=degree_log {
let subsubgroup = subgroup.iter().step_by(2).copied().collect();
let subgroup_rev = reverse_index_bits(subgroup);
subgroups_rev.push(subgroup_rev);
subgroup = subsubgroup;
}
subgroups_rev.reverse();
FftPrecomputation { subgroups_rev }
}
@ -179,10 +181,9 @@ mod tests {
let degree = coefficients.len();
let degree_log = log2_strict(degree);
let g = F::primitive_root_of_unity(degree_log);
let powers_of_g = F::cyclic_subgroup_known_order(g, degree);
let subgroup = F::two_adic_subgroup(degree_log);
let values = powers_of_g
let values = subgroup
.into_iter()
.map(|x| evaluate_at_naive(&coefficients, x))
.collect();

View File

@ -104,21 +104,18 @@ pub trait Field:
fn primitive_root_of_unity(n_log: usize) -> Self {
assert!(n_log <= Self::TWO_ADICITY);
let mut base = Self::POWER_OF_TWO_GENERATOR;
for _ in n_log..Self::TWO_ADICITY {
base = base.square();
}
base
base.exp_power_of_2(Self::TWO_ADICITY - n_log)
}
/// Computes a multiplicative subgroup whose order is known in advance.
fn cyclic_subgroup_known_order(generator: Self, order: usize) -> Vec<Self> {
let mut subgroup = Vec::with_capacity(order);
let mut current = Self::ONE;
for _i in 0..order {
subgroup.push(current);
current *= generator;
}
subgroup
generator.powers().take(order).collect()
}
/// Computes the subgroup generated by the root of unity of a given order generated by `Self::primitive_root_of_unity`.
fn two_adic_subgroup(n_log: usize) -> Vec<Self> {
let generator = Self::primitive_root_of_unity(n_log);
generator.powers().take(1 << n_log).collect()
}
fn cyclic_subgroup_unknown_order(generator: Self) -> Vec<Self> {
@ -158,6 +155,14 @@ pub trait Field:
bits_u64(self.to_canonical_u64())
}
fn exp_power_of_2(&self, power_log: usize) -> Self {
let mut res = *self;
for _ in 0..power_log {
res = res.square();
}
res
}
fn exp(&self, power: u64) -> Self {
let mut current = *self;
let mut product = Self::ONE;
@ -266,6 +271,11 @@ pub trait Field:
fn rand_vec(n: usize) -> Vec<Self> {
(0..n).map(|_| Self::rand()).collect()
}
/// Representative `g` of the coset used in FRI, so that LDEs in FRI are done over `gH`.
fn coset_shift() -> Self {
Self::MULTIPLICATIVE_GROUP_GENERATOR
}
}
/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.

View File

@ -10,10 +10,8 @@ use crate::util::log2_ceil;
pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
let n = points.len();
let n_log = log2_ceil(n);
let n_padded = 1 << n_log;
let g = F::primitive_root_of_unity(n_log);
let subgroup = F::cyclic_subgroup_known_order(g, n_padded);
let subgroup = F::two_adic_subgroup(n_log);
let barycentric_weights = barycentric_weights(points);
let subgroup_evals = subgroup
.into_iter()
@ -104,8 +102,7 @@ mod tests {
for deg_log in 0..4 {
let deg = 1 << deg_log;
let g = F::primitive_root_of_unity(deg_log);
let domain = F::cyclic_subgroup_known_order(g, deg);
let domain = F::two_adic_subgroup(deg_log);
let coeffs = F::rand_vec(deg);
let coeffs = PolynomialCoeffs { coeffs };

View File

@ -159,8 +159,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
// Polynomials opened at `x`, i.e., the constants, sigmas and quotient polynomials.
let single_evals = [
PlonkPolynomials::CONSTANTS,
PlonkPolynomials::SIGMAS,
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::QUOTIENT,
]
.iter()

View File

@ -162,8 +162,7 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
// Polynomials opened at `x`, i.e., the constants, sigmas and quotient polynomials.
let single_evals = [
PlonkPolynomials::CONSTANTS,
PlonkPolynomials::SIGMAS,
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::QUOTIENT,
]
.iter()

View File

@ -57,8 +57,9 @@ impl<F: Extendable<D>, const D: usize> Tree<GateRef<F, D>> {
/// For this construction, we use the greedy algorithm in `Self::find_tree`.
/// This latter function greedily adds gates at the depth where
/// `filtered_deg(gate)=D, constant_wires(gate)=C` to ensure no space is wasted.
/// We return the first tree found in this manner.
pub fn from_gates(mut gates: Vec<GateRef<F, D>>) -> Self {
/// We return the first tree found in this manner, along with it's maximum filtered degree
/// and the number of constant wires needed when using this tree.
pub fn from_gates(mut gates: Vec<GateRef<F, D>>) -> (Self, usize, usize) {
let timer = std::time::Instant::now();
gates.sort_unstable_by_key(|g| (-(g.0.degree() as isize), -(g.0.num_constants() as isize)));
@ -67,14 +68,30 @@ impl<F: Extendable<D>, const D: usize> Tree<GateRef<F, D>> {
// So we can restrict our search space by setting `max_degree` to a power of 2.
let max_degree = 1 << max_degree_bits;
for max_constants in 1..100 {
if let Some(mut tree) = Self::find_tree(&gates, max_degree, max_constants) {
tree.shorten();
if let Some(mut best_tree) = Self::find_tree(&gates, max_degree, max_constants) {
let mut best_num_constants = best_tree.num_constants();
let mut best_degree = max_degree;
// Iterate backwards from `max_degree` to try to find a tree with a lower degree
// but the same number of constants.
'optdegree: for degree in (0..max_degree).rev() {
if let Some(mut tree) = Self::find_tree(&gates, degree, max_constants) {
let num_constants = tree.num_constants();
if num_constants > best_num_constants {
break 'optdegree;
} else {
best_degree = degree;
best_num_constants = num_constants;
best_tree = tree;
}
}
}
info!(
"Found tree with max degree {} in {}s.",
max_degree,
"Found tree with max degree {} and {} constants wires in {}s.",
best_degree,
best_num_constants,
timer.elapsed().as_secs_f32()
);
return tree;
return (best_tree, best_degree, best_num_constants);
}
}
}
@ -89,6 +106,7 @@ impl<F: Extendable<D>, const D: usize> Tree<GateRef<F, D>> {
for g in gates {
tree.try_add_gate(g, max_degree, max_constants)?;
}
tree.shorten();
Some(tree)
}
@ -180,6 +198,24 @@ impl<F: Extendable<D>, const D: usize> Tree<GateRef<F, D>> {
}
}
}
/// Returns the tree's maximum filtered constraint degree.
fn max_filtered_degree(&self) -> usize {
self.traversal()
.into_iter()
.map(|(g, p)| g.0.degree() + p.len())
.max()
.expect("Empty tree.")
}
/// Returns the number of constant wires needed to fit all prefixes and gate constants.
fn num_constants(&self) -> usize {
self.traversal()
.into_iter()
.map(|(g, p)| g.0.num_constants() + p.len())
.max()
.expect("Empty tree.")
}
}
#[cfg(test)]
@ -210,7 +246,7 @@ mod tests {
];
let len = gates.len();
let tree = Tree::from_gates(gates.clone());
let (tree, _, _) = Tree::from_gates(gates.clone());
let mut gates_with_prefix = tree.traversal();
for (g, p) in &gates_with_prefix {
info!(

View File

@ -110,9 +110,9 @@ impl WirePartitions {
&self,
degree_log: usize,
k_is: &[F],
subgroup: &[F],
) -> Vec<PolynomialValues<F>> {
let degree = 1 << degree_log;
let subgroup_generator = F::primitive_root_of_unity(degree_log);
let sigma = self.get_sigma_map(degree);
sigma
@ -120,7 +120,7 @@ impl WirePartitions {
.map(|chunk| {
let values = chunk
.par_iter()
.map(|&x| k_is[x / degree] * subgroup_generator.exp((x % degree) as u64))
.map(|&x| k_is[x / degree] * subgroup[x % degree])
.collect::<Vec<_>>();
PolynomialValues::new(values)
})

View File

@ -29,35 +29,30 @@ impl PolynomialsIndexBlinding {
/// Holds the indices and blinding flags of the Plonk polynomials.
pub struct PlonkPolynomials;
impl PlonkPolynomials {
pub const CONSTANTS: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
pub const CONSTANTS_SIGMAS: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
index: 0,
blinding: false,
};
pub const SIGMAS: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
index: 1,
blinding: false,
};
pub const WIRES: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
index: 2,
index: 1,
blinding: true,
};
pub const ZS: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
index: 3,
index: 2,
blinding: true,
};
pub const QUOTIENT: PolynomialsIndexBlinding = PolynomialsIndexBlinding {
index: 4,
index: 3,
blinding: true,
};
pub fn polynomials(i: usize) -> PolynomialsIndexBlinding {
match i {
0 => Self::CONSTANTS,
1 => Self::SIGMAS,
2 => Self::WIRES,
3 => Self::ZS,
4 => Self::QUOTIENT,
_ => panic!("There are only 5 sets of polynomials in Plonk."),
0 => Self::CONSTANTS_SIGMAS,
1 => Self::WIRES,
2 => Self::ZS,
3 => Self::QUOTIENT,
_ => panic!("There are only 4 sets of polynomials in Plonk."),
}
}
}
@ -116,6 +111,7 @@ pub(crate) fn eval_vanishing_poly<F: Extendable<D>, const D: usize>(
/// Like `eval_vanishing_poly`, but specialized for base field points.
pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
index: usize,
x: F,
vars: EvaluationVarsBase<F>,
local_plonk_zs: &[F],
@ -124,6 +120,7 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
betas: &[F],
gammas: &[F],
alphas: &[F],
z_h_on_coset: &ZeroPolyOnCoset<F>,
) -> Vec<F> {
let constraint_terms =
evaluate_gate_constraints_base(&common_data.gates, common_data.num_gate_constraints, vars);
@ -136,7 +133,7 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
for i in 0..common_data.config.num_challenges {
let z_x = local_plonk_zs[i];
let z_gz = next_plonk_zs[i];
vanishing_z_1_terms.push(eval_l_1(common_data.degree(), x) * (z_x - F::ONE));
vanishing_z_1_terms.push(z_h_on_coset.eval_l1(index, x) * (z_x - F::ONE));
let mut f_prime = F::ONE;
let mut g_prime = F::ONE;
@ -226,6 +223,51 @@ pub(crate) fn eval_zero_poly<F: Field>(n: usize, x: F) -> F {
x.exp(n as u64) - F::ONE
}
/// Precomputations of the evaluation of `Z_H(X) = X^n - 1` on a coset `gK` with `H <= K`.
pub(crate) struct ZeroPolyOnCoset<F: Field> {
/// `n = |H|`.
n: F,
/// `rate = |K|/|H|`.
rate: usize,
/// Holds `g^n * (w^n)^i - 1 = g^n * v^i - 1` for `i in 0..rate`, with `w` a generator of `K` and `v` a
/// `rate`-primitive root of unity.
evals: Vec<F>,
/// Holds the multiplicative inverses of `evals`.
inverses: Vec<F>,
}
impl<F: Field> ZeroPolyOnCoset<F> {
pub fn new(n_log: usize, rate_bits: usize) -> Self {
let g_pow_n = F::coset_shift().exp_power_of_2(n_log);
let evals = F::two_adic_subgroup(rate_bits)
.into_iter()
.map(|x| g_pow_n * x - F::ONE)
.collect::<Vec<_>>();
let inverses = F::batch_multiplicative_inverse(&evals);
Self {
n: F::from_canonical_usize(1 << n_log),
rate: 1 << rate_bits,
evals,
inverses,
}
}
/// Returns `Z_H(g * w^i)`.
pub fn eval(&self, i: usize) -> F {
self.evals[i % self.rate]
}
/// Returns `1 / Z_H(g * w^i)`.
pub fn eval_inverse(&self, i: usize) -> F {
self.inverses[i % self.rate]
}
/// Returns `L_1(x) = Z_H(x)/(n * (x - 1))` with `x = w^i`.
pub fn eval_l1(&self, i: usize, x: F) -> F {
// Could also precompute the inverses using Montgomery.
self.eval(i) * (self.n * (x - F::ONE)).inverse()
}
}
/// Evaluate the Lagrange basis `L_1` with `L_1(1) = 1`, and `L_1(x) = 0` for other members of an
/// order `n` multiplicative subgroup.
pub(crate) fn eval_l_1<F: Field>(n: usize, x: F) -> F {

View File

@ -1,6 +1,7 @@
use anyhow::Result;
use rayon::prelude::*;
use crate::circuit_data::CommonCircuitData;
use crate::field::extension_field::Extendable;
use crate::field::extension_field::{FieldExtension, Frobenius};
use crate::field::field::Field;
@ -8,11 +9,11 @@ use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::PlonkPolynomials;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::{FriProof, FriProofTarget, Hash, OpeningSet};
use crate::timed;
use crate::util::scaling::ReducingFactor;
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place, transpose};
pub const SALT_SIZE: usize = 2;
@ -20,18 +21,49 @@ pub struct ListPolynomialCommitment<F: Field> {
pub polynomials: Vec<PolynomialCoeffs<F>>,
pub merkle_tree: MerkleTree<F>,
pub degree: usize,
pub degree_log: usize,
pub rate_bits: usize,
pub blinding: bool,
}
impl<F: Field> ListPolynomialCommitment<F> {
pub fn new(polynomials: Vec<PolynomialCoeffs<F>>, rate_bits: usize, blinding: bool) -> Self {
/// Creates a list polynomial commitment for the polynomials interpolating the values in `values`.
pub fn new(values: Vec<PolynomialValues<F>>, rate_bits: usize, blinding: bool) -> Self {
let degree = values[0].len();
let polynomials = values
.par_iter()
.map(|v| v.clone().ifft())
.collect::<Vec<_>>();
let lde_values = timed!(
Self::lde_values(&polynomials, rate_bits, blinding),
"to compute LDE"
);
Self::new_from_data(polynomials, lde_values, degree, rate_bits, blinding)
}
/// Creates a list polynomial commitment for the polynomials `polynomials`.
pub fn new_from_polys(
polynomials: Vec<PolynomialCoeffs<F>>,
rate_bits: usize,
blinding: bool,
) -> Self {
let degree = polynomials[0].len();
let lde_values = timed!(
Self::lde_values(&polynomials, rate_bits, blinding),
"to compute LDE"
);
Self::new_from_data(polynomials, lde_values, degree, rate_bits, blinding)
}
fn new_from_data(
polynomials: Vec<PolynomialCoeffs<F>>,
lde_values: Vec<Vec<F>>,
degree: usize,
rate_bits: usize,
blinding: bool,
) -> Self {
let mut leaves = timed!(transpose(&lde_values), "to transpose LDEs");
reverse_index_bits_in_place(&mut leaves);
let merkle_tree = timed!(MerkleTree::new(leaves, false), "to build Merkle tree");
@ -40,6 +72,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
polynomials,
merkle_tree,
degree,
degree_log: log2_strict(degree),
rate_bits,
blinding,
}
@ -55,10 +88,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
.par_iter()
.map(|p| {
assert_eq!(p.len(), degree, "Polynomial degree invalid.");
p.clone()
.lde(rate_bits)
.coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR)
.values
p.clone().lde(rate_bits).coset_fft(F::coset_shift()).values
})
.chain(if blinding {
// If blinding, salt with two random elements to each leaf vector.
@ -71,24 +101,26 @@ impl<F: Field> ListPolynomialCommitment<F> {
.collect()
}
pub fn leaf(&self, index: usize) -> &[F] {
let leaf = &self.merkle_tree.leaves[index];
&leaf[0..leaf.len() - if self.blinding { SALT_SIZE } else { 0 }]
pub fn get_lde_values(&self, index: usize) -> &[F] {
let index = reverse_bits(index, self.degree_log + self.rate_bits);
let slice = &self.merkle_tree.leaves[index];
&slice[..slice.len() - if self.blinding { SALT_SIZE } else { 0 }]
}
/// Takes the commitments to the constants - sigmas - wires - zs - quotient — polynomials,
/// and an opening point `zeta` and produces a batched opening proof + opening set.
pub fn open_plonk<const D: usize>(
commitments: &[&Self; 5],
commitments: &[&Self; 4],
zeta: F::Extension,
challenger: &mut Challenger<F>,
config: &FriConfig,
common_data: &CommonCircuitData<F, D>,
) -> (OpeningProof<F, D>, OpeningSet<F, D>)
where
F: Extendable<D>,
{
let config = &common_data.config.fri_config;
assert!(D > 1, "Not implemented for D=1.");
let degree_log = log2_strict(commitments[0].degree);
let degree_log = commitments[0].degree_log;
let g = F::Extension::primitive_root_of_unity(degree_log);
for p in &[zeta, g * zeta] {
assert_ne!(
@ -105,7 +137,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
commitments[1],
commitments[2],
commitments[3],
commitments[4],
common_data,
);
challenger.observe_opening_set(&os);
@ -117,8 +149,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
// Polynomials opened at a single point.
let single_polys = [
PlonkPolynomials::CONSTANTS,
PlonkPolynomials::SIGMAS,
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::QUOTIENT,
]
.iter()
@ -251,16 +282,17 @@ mod tests {
use anyhow::Result;
use super::*;
use crate::circuit_data::CircuitConfig;
use crate::plonk_common::PlonkPolynomials;
fn gen_random_test_case<F: Field + Extendable<D>, const D: usize>(
k: usize,
degree_log: usize,
) -> Vec<PolynomialCoeffs<F>> {
) -> Vec<PolynomialValues<F>> {
let degree = 1 << degree_log;
(0..k)
.map(|_| PolynomialCoeffs::new(F::rand_vec(degree)))
.map(|_| PolynomialValues::new(F::rand_vec(degree)))
.collect()
}
@ -278,7 +310,7 @@ mod tests {
}
fn check_batch_polynomial_commitment<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let ks = [1, 2, 3, 5, 8];
let ks = [10, 2, 3, 8];
let degree_log = 11;
let fri_config = FriConfig {
proof_of_work_bits: 2,
@ -286,12 +318,27 @@ mod tests {
reduction_arity_bits: vec![2, 3, 1, 2],
num_query_rounds: 3,
};
// We only care about `fri_config, num_constants`, and `num_routed_wires` here.
let common_data = CommonCircuitData {
config: CircuitConfig {
fri_config,
num_routed_wires: 6,
..CircuitConfig::large_config()
},
degree_bits: 0,
gates: vec![],
max_filtered_constraint_degree: 0,
num_gate_constraints: 0,
num_constants: 4,
k_is: vec![F::ONE; 6],
circuit_digest: Hash::from_partial(vec![]),
};
let lpcs = (0..5)
let lpcs = (0..4)
.map(|i| {
ListPolynomialCommitment::<F>::new(
gen_random_test_case(ks[i], degree_log),
fri_config.rate_bits,
common_data.config.fri_config.rate_bits,
PlonkPolynomials::polynomials(i).blinding,
)
})
@ -299,10 +346,10 @@ mod tests {
let zeta = gen_random_point::<F, D>(degree_log);
let (proof, os) = ListPolynomialCommitment::open_plonk::<D>(
&[&lpcs[0], &lpcs[1], &lpcs[2], &lpcs[3], &lpcs[4]],
&[&lpcs[0], &lpcs[1], &lpcs[2], &lpcs[3]],
zeta,
&mut Challenger::new(),
&fri_config,
&common_data,
);
proof.verify(
@ -313,10 +360,9 @@ mod tests {
lpcs[1].merkle_tree.root,
lpcs[2].merkle_tree.root,
lpcs[3].merkle_tree.root,
lpcs[4].merkle_tree.root,
],
&mut Challenger::new(),
&fri_config,
&common_data.config.fri_config,
)
}

View File

@ -2,6 +2,8 @@ use std::cmp::max;
use std::iter::Sum;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use anyhow::{ensure, Result};
use crate::field::extension_field::Extendable;
use crate::field::fft::{fft, ifft};
use crate::field::field::Field;
@ -34,6 +36,19 @@ impl<F: Field> PolynomialValues<F> {
ifft(self)
}
/// Returns the polynomial whose evaluation on the coset `shift*H` is `self`.
pub fn coset_ifft(self, shift: F) -> PolynomialCoeffs<F> {
let mut shifted_coeffs = self.ifft();
shifted_coeffs
.coeffs
.iter_mut()
.zip(shift.inverse().powers())
.for_each(|(c, r)| {
*c *= r;
});
shifted_coeffs
}
pub fn lde_multiple(polys: Vec<Self>, rate_bits: usize) -> Vec<Self> {
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
}
@ -127,11 +142,21 @@ impl<F: Field> PolynomialCoeffs<F> {
self.padded(self.len() << rate_bits)
}
pub(crate) fn pad(&mut self, new_len: usize) -> Result<()> {
ensure!(
new_len >= self.len(),
"Trying to pad a polynomial of length {} to a length of {}.",
self.len(),
new_len
);
self.coeffs.resize(new_len, F::ZERO);
Ok(())
}
pub(crate) fn padded(&self, new_len: usize) -> Self {
assert!(new_len >= self.len());
let mut coeffs = self.coeffs.clone();
coeffs.resize(new_len, F::ZERO);
Self { coeffs }
let mut poly = self.clone();
poly.pad(new_len).unwrap();
poly
}
/// Removes leading zero coefficients.
@ -171,6 +196,7 @@ impl<F: Field> PolynomialCoeffs<F> {
fft(self)
}
/// Returns the evaluation of the polynomial on the coset `shift*H`.
pub fn coset_fft(self, shift: F) -> PolynomialValues<F> {
let modified_poly: Self = shift
.powers()
@ -369,8 +395,31 @@ mod tests {
.into_iter()
.map(|x| poly.eval(x))
.collect::<Vec<_>>();
assert_eq!(coset_evals, naive_coset_evals);
let ifft_coeffs = PolynomialValues::new(coset_evals).coset_ifft(shift);
assert_eq!(poly, ifft_coeffs.into());
}
#[test]
fn test_coset_ifft() {
type F = CrandallField;
let k = 8;
let n = 1 << k;
let evals = PolynomialValues::new(F::rand_vec(n));
let shift = F::rand();
let coeffs = evals.clone().coset_ifft(shift);
let generator = F::primitive_root_of_unity(k);
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
.into_iter()
.map(|x| coeffs.eval(x))
.collect::<Vec<_>>();
assert_eq!(evals, naive_coset_evals.into());
let fft_evals = coeffs.coset_fft(shift);
assert_eq!(evals, fft_evals);
}
#[test]

View File

@ -1,5 +1,6 @@
use std::convert::TryInto;
use crate::circuit_data::CommonCircuitData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
@ -160,11 +161,11 @@ impl<F: Field + Extendable<D>, const D: usize> OpeningSet<F, D> {
pub fn new(
z: F::Extension,
g: F::Extension,
constant_commitment: &ListPolynomialCommitment<F>,
plonk_sigmas_commitment: &ListPolynomialCommitment<F>,
constants_sigmas_commitment: &ListPolynomialCommitment<F>,
wires_commitment: &ListPolynomialCommitment<F>,
plonk_zs_commitment: &ListPolynomialCommitment<F>,
quotient_polys_commitment: &ListPolynomialCommitment<F>,
common_data: &CommonCircuitData<F, D>,
) -> Self {
let eval_commitment = |z: F::Extension, c: &ListPolynomialCommitment<F>| {
c.polynomials
@ -172,9 +173,10 @@ impl<F: Field + Extendable<D>, const D: usize> OpeningSet<F, D> {
.map(|p| p.to_extension().eval(z))
.collect::<Vec<_>>()
};
let constants_sigmas_eval = eval_commitment(z, constants_sigmas_commitment);
Self {
constants: eval_commitment(z, constant_commitment),
plonk_s_sigmas: eval_commitment(z, plonk_sigmas_commitment),
constants: constants_sigmas_eval[common_data.constants_range()].to_vec(),
plonk_s_sigmas: constants_sigmas_eval[common_data.sigmas_range()].to_vec(),
wires: eval_commitment(z, wires_commitment),
plonk_zs: eval_commitment(z, plonk_zs_commitment),
plonk_zs_right: eval_commitment(g * z, plonk_zs_commitment),

View File

@ -5,19 +5,16 @@ use rayon::prelude::*;
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::field::fft::ifft;
use crate::field::field::Field;
use crate::generator::generate_partial_witness;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::eval_vanishing_poly_base;
use crate::plonk_common::{eval_vanishing_poly_base, PlonkPolynomials, ZeroPolyOnCoset};
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::timed;
use crate::util::transpose;
use crate::util::{log2_ceil, transpose};
use crate::vars::EvaluationVarsBase;
use crate::wire::Wire;
use crate::witness::PartialWitness;
use crate::witness::{PartialWitness, Witness};
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F, D>,
@ -25,16 +22,26 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
inputs: PartialWitness<F>,
) -> Proof<F, D> {
let fri_config = &common_data.config.fri_config;
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let start_proof_gen = Instant::now();
let mut witness = inputs;
let mut partial_witness = inputs;
info!("Running {} generators", prover_data.generators.len());
timed!(
generate_partial_witness(&mut witness, &prover_data.generators,),
generate_partial_witness(&mut partial_witness, &prover_data.generators),
"to generate witness"
);
let witness = timed!(
partial_witness.full_witness(degree, num_wires),
"to compute full witness"
);
timed!(
witness
.check_copy_constraints(&prover_data.copy_constraints, &prover_data.gate_instances)
@ -42,16 +49,11 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
"to check copy constraints"
);
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let wires_polynomials: Vec<PolynomialCoeffs<F>> = timed!(
(0..num_wires)
.into_par_iter()
.map(|i| compute_wire_polynomial(i, &witness, degree))
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness
.wire_values
.iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect(),
"to compute wire polynomials"
);
@ -59,7 +61,11 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let wires_commitment = timed!(
ListPolynomialCommitment::new(wires_polynomials, fri_config.rate_bits, true),
ListPolynomialCommitment::new(
wires_values,
fri_config.rate_bits,
PlonkPolynomials::WIRES.blinding
),
"to compute wires commitment"
);
@ -72,10 +78,17 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let plonk_z_vecs = timed!(compute_zs(&common_data), "to compute Z's");
let plonk_z_vecs = timed!(
compute_zs(&witness, &betas, &gammas, prover_data, common_data),
"to compute Z's"
);
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(plonk_z_vecs, fri_config.rate_bits, true),
ListPolynomialCommitment::new(
plonk_z_vecs,
fri_config.rate_bits,
PlonkPolynomials::ZS.blinding
),
"to commit to Z's"
);
@ -83,8 +96,8 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let alphas = challenger.get_n_challenges(num_challenges);
let vanishing_polys = timed!(
compute_vanishing_polys(
let quotient_polys = timed!(
compute_quotient_polys(
common_data,
prover_data,
&wires_commitment,
@ -98,20 +111,27 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
// Compute the quotient polynomials, aka `t` in the Plonk paper.
let all_quotient_poly_chunks = timed!(
vanishing_polys
quotient_polys
.into_par_iter()
.flat_map(|vanishing_poly| {
let vanishing_poly_coeff = ifft(vanishing_poly);
let quotient_poly_coeff = vanishing_poly_coeff.divide_by_z_h(degree);
.flat_map(|mut quotient_poly| {
quotient_poly.trim();
quotient_poly.pad(quotient_degree).expect(
"The quotient polynomial doesn't have the right degree.\
This may be because the `Z`s polynomials are still too high degree.",
);
// Split t into degree-n chunks.
quotient_poly_coeff.chunks(degree)
quotient_poly.chunks(degree)
})
.collect(),
"to compute quotient polys"
);
let quotient_polys_commitment = timed!(
ListPolynomialCommitment::new(all_quotient_poly_chunks, fri_config.rate_bits, true),
ListPolynomialCommitment::new_from_polys(
all_quotient_poly_chunks,
fri_config.rate_bits,
PlonkPolynomials::QUOTIENT.blinding
),
"to commit to quotient polys"
);
@ -122,15 +142,14 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::open_plonk(
&[
&prover_data.constants_commitment,
&prover_data.sigmas_commitment,
&prover_data.constants_sigmas_commitment,
&wires_commitment,
&plonk_zs_commitment,
&quotient_polys_commitment,
],
zeta,
&mut challenger,
&common_data.config.fri_config
common_data,
),
"to compute opening proofs"
);
@ -150,44 +169,94 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
}
fn compute_zs<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
betas: &[F],
gammas: &[F],
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialCoeffs<F>> {
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(common_data, i))
.map(|i| compute_z(witness, betas[i], gammas[i], prover_data, common_data))
.collect()
}
fn compute_z<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
beta: F,
gamma: F,
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
_i: usize,
) -> PolynomialCoeffs<F> {
PolynomialCoeffs::zero(common_data.degree()) // TODO
) -> PolynomialValues<F> {
let subgroup = &prover_data.subgroup;
let mut plonk_z_points = vec![F::ONE];
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let mut numerator = F::ONE;
let mut denominator = F::ONE;
let s_sigmas = &prover_data.sigmas[i - 1];
for j in 0..common_data.config.num_routed_wires {
let wire_value = witness.get_wire(i - 1, j);
let k_i = k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
numerator *= wire_value + beta * s_id + gamma;
denominator *= wire_value + beta * s_sigma + gamma;
}
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * numerator / denominator);
}
plonk_z_points.into()
}
fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &ProverOnlyCircuitData<F, D>,
wires_commitment: &ListPolynomialCommitment<F>,
plonk_zs_commitment: &ListPolynomialCommitment<F>,
prover_data: &'a ProverOnlyCircuitData<F, D>,
wires_commitment: &'a ListPolynomialCommitment<F>,
plonk_zs_commitment: &'a ListPolynomialCommitment<F>,
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialValues<F>> {
let lde_size = common_data.lde_size();
let lde_gen = common_data.lde_generator();
) -> Vec<PolynomialCoeffs<F>> {
let num_challenges = common_data.config.num_challenges;
let max_filtered_constraint_degree_bits = log2_ceil(common_data.max_filtered_constraint_degree);
assert!(
max_filtered_constraint_degree_bits <= common_data.config.rate_bits,
"Having constraints of degree higher than the rate is not supported yet. \
If we need this in the future, we can precompute the larger LDE before computing the `ListPolynomialCommitment`s."
);
let points = F::cyclic_subgroup_known_order(lde_gen, lde_size);
let values: Vec<Vec<F>> = points
// We reuse the LDE computed in `ListPolynomialCommitment` and extract every `step` points to get
// an LDE matching `max_filtered_constraint_degree`.
let step = 1 << (common_data.config.rate_bits - max_filtered_constraint_degree_bits);
// When opening the `Z`s polys at the "next" point in Plonk, need to look at the point `next_step`
// steps away since we work on an LDE of degree `max_filtered_constraint_degree`.
let next_step = 1 << max_filtered_constraint_degree_bits;
let points =
F::two_adic_subgroup(common_data.degree_bits + max_filtered_constraint_degree_bits);
let lde_size = points.len();
// Retrieve the LDE values at index `i`.
let get_at_index = |comm: &'a ListPolynomialCommitment<F>, i: usize| -> &'a [F] {
comm.get_lde_values(i * step)
};
let z_h_on_coset =
ZeroPolyOnCoset::new(common_data.degree_bits, max_filtered_constraint_degree_bits);
let quotient_values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let i_next = (i + 1) % lde_size;
let local_wires = wires_commitment.leaf(i);
let local_constants = prover_data.constants_commitment.leaf(i);
let local_plonk_zs = plonk_zs_commitment.leaf(i);
let next_plonk_zs = plonk_zs_commitment.leaf(i_next);
let s_sigmas = prover_data.sigmas_commitment.leaf(i);
let shifted_x = F::coset_shift() * x;
let i_next = (i + next_step) % lde_size;
let local_constants_sigmas = get_at_index(&prover_data.constants_sigmas_commitment, i);
let local_constants = &local_constants_sigmas[common_data.constants_range()];
let s_sigmas = &local_constants_sigmas[common_data.sigmas_range()];
let local_wires = get_at_index(wires_commitment, i);
let local_plonk_zs = get_at_index(plonk_zs_commitment, i);
let next_plonk_zs = get_at_index(plonk_zs_commitment, i_next);
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), num_challenges);
@ -196,9 +265,10 @@ fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
local_constants,
local_wires,
};
eval_vanishing_poly_base(
let mut quotient_values = eval_vanishing_poly_base(
common_data,
x,
i,
shifted_x,
vars,
local_plonk_zs,
next_plonk_zs,
@ -206,31 +276,19 @@ fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
betas,
gammas,
alphas,
)
&z_h_on_coset,
);
let denominator_inv = z_h_on_coset.eval_inverse(i);
quotient_values
.iter_mut()
.for_each(|v| *v *= denominator_inv);
quotient_values
})
.collect();
transpose(&values)
.into_iter()
transpose(&quotient_values)
.into_par_iter()
.map(PolynomialValues::new)
.map(|values| values.coset_ifft(F::coset_shift()))
.collect()
}
fn compute_wire_polynomial<F: Field>(
input: usize,
witness: &PartialWitness<F>,
degree: usize,
) -> PolynomialCoeffs<F> {
let wire_values = (0..degree)
// Some gates do not use all wires, and we do not require that generators populate unused
// wires, so some wire values will not be set. We can set these to any value; here we
// arbitrary pick zero. Ideally we would verify that no constraints operate on these unset
// wires, but that isn't trivial.
.map(|gate| {
witness
.try_get_wire(Wire { gate, input })
.unwrap_or(F::ZERO)
})
.collect();
PolynomialValues::new(wire_values).ifft()
}

View File

@ -6,13 +6,13 @@ use crate::field::extension_field::target::{ExtensionAlgebraTarget, ExtensionTar
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
#[derive(Copy, Clone)]
#[derive(Debug, Copy, Clone)]
pub struct EvaluationVars<'a, F: Extendable<D>, const D: usize> {
pub(crate) local_constants: &'a [F::Extension],
pub(crate) local_wires: &'a [F::Extension],
}
#[derive(Copy, Clone)]
#[derive(Debug, Copy, Clone)]
pub struct EvaluationVarsBase<'a, F: Field> {
pub(crate) local_constants: &'a [F],
pub(crate) local_wires: &'a [F],

View File

@ -64,8 +64,7 @@ pub(crate) fn verify<F: Extendable<D>, const D: usize>(
let evaluations = proof.openings.clone();
let merkle_roots = &[
verifier_data.constants_root,
verifier_data.sigmas_root,
verifier_data.constants_sigmas_root,
proof.wires_root,
proof.plonk_zs_root,
proof.quotient_polys_root,

View File

@ -10,6 +10,52 @@ use crate::gates::gate::GateInstance;
use crate::target::Target;
use crate::wire::Wire;
#[derive(Clone, Debug)]
pub struct Witness<F: Field> {
pub(crate) wire_values: Vec<Vec<F>>,
}
impl<F: Field> Witness<F> {
pub fn get_wire(&self, gate: usize, input: usize) -> F {
self.wire_values[input][gate]
}
/// Checks that the copy constraints are satisfied in the witness.
pub fn check_copy_constraints<const D: usize>(
&self,
copy_constraints: &[(Target, Target)],
gate_instances: &[GateInstance<F, D>],
) -> Result<()>
where
F: Extendable<D>,
{
for &(a, b) in copy_constraints {
// TODO: Take care of public inputs once they land.
if let (
Target::Wire(Wire {
gate: a_gate,
input: a_input,
}),
Target::Wire(Wire {
gate: b_gate,
input: b_input,
}),
) = (a, b)
{
let va = self.get_wire(a_gate, a_input);
let vb = self.get_wire(b_gate, b_input);
ensure!(
va == vb,
"Copy constraint between wire {} of gate #{} (`{}`) and wire {} of gate #{} (`{}`) is not satisfied. \
Got values of {} and {} respectively.",
a_input, a_gate, gate_instances[a_gate].gate_type.0.id(), b_input, b_gate,
gate_instances[b_gate].gate_type.0.id(), va, vb);
}
}
Ok(())
}
}
#[derive(Clone, Debug)]
pub struct PartialWitness<F: Field> {
pub(crate) target_values: HashMap<Target, F>,
@ -137,29 +183,14 @@ impl<F: Field> PartialWitness<F> {
}
}
/// Checks that the copy constraints are satisfied in the witness.
pub fn check_copy_constraints<const D: usize>(
&self,
copy_constraints: &[(Target, Target)],
gate_instances: &[GateInstance<F, D>],
) -> Result<()>
where
F: Extendable<D>,
{
for &(a, b) in copy_constraints {
// TODO: Take care of public inputs once they land.
if let (Target::Wire(wa), Target::Wire(wb)) = (a, b) {
let va = self.target_values.get(&a).copied().unwrap_or(F::ZERO);
let vb = self.target_values.get(&b).copied().unwrap_or(F::ZERO);
ensure!(
va == vb,
"Copy constraint between wire {} of gate #{} (`{}`) and wire {} of gate #{} (`{}`) is not satisfied. \
Got values of {} and {} respectively.",
wa.input, wa.gate, gate_instances[wa.gate].gate_type.0.id(), wb.input, wb.gate,
gate_instances[wb.gate].gate_type.0.id(), va, vb);
pub fn full_witness(self, degree: usize, num_wires: usize) -> Witness<F> {
let mut wire_values = vec![vec![F::ZERO; degree]; num_wires];
self.target_values.into_iter().for_each(|(t, v)| {
if let Target::Wire(Wire { gate, input }) = t {
wire_values[input][gate] = v;
}
}
Ok(())
});
Witness { wire_values }
}
}