plonky2/src/prover.rs

295 lines
10 KiB
Rust

use std::time::Instant;
use log::info;
use rayon::prelude::*;
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::generator::generate_partial_witness;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::{eval_vanishing_poly_base, PlonkPolynomials, ZeroPolyOnCoset};
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::timed;
use crate::util::{log2_ceil, transpose};
use crate::vars::EvaluationVarsBase;
use crate::witness::{PartialWitness, Witness};
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
inputs: PartialWitness<F>,
) -> Proof<F, D> {
let fri_config = &common_data.config.fri_config;
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let start_proof_gen = Instant::now();
let mut partial_witness = inputs;
info!("Running {} generators", prover_data.generators.len());
timed!(
generate_partial_witness(&mut partial_witness, &prover_data.generators),
"to generate witness"
);
let witness = timed!(
partial_witness.full_witness(degree, num_wires),
"to compute full witness"
);
timed!(
witness
.check_copy_constraints(&prover_data.copy_constraints, &prover_data.gate_instances)
.unwrap(), // TODO: Change return value to `Result` and use `?` here.
"to check copy constraints"
);
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness
.wire_values
.iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect(),
"to compute wire polynomials"
);
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let wires_commitment = timed!(
ListPolynomialCommitment::new(
wires_values,
fri_config.rate_bits,
PlonkPolynomials::WIRES.blinding
),
"to compute wires commitment"
);
let mut challenger = Challenger::new();
// Observe the instance.
// TODO: Need to include public inputs as well.
challenger.observe_hash(&common_data.circuit_digest);
challenger.observe_hash(&wires_commitment.merkle_tree.root);
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let plonk_z_vecs = timed!(
compute_zs(&witness, &betas, &gammas, prover_data, common_data),
"to compute Z's"
);
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(
plonk_z_vecs,
fri_config.rate_bits,
PlonkPolynomials::ZS.blinding
),
"to commit to Z's"
);
challenger.observe_hash(&plonk_zs_commitment.merkle_tree.root);
let alphas = challenger.get_n_challenges(num_challenges);
let quotient_polys = timed!(
compute_quotient_polys(
common_data,
prover_data,
&wires_commitment,
&plonk_zs_commitment,
&betas,
&gammas,
&alphas,
),
"to compute vanishing polys"
);
// Compute the quotient polynomials, aka `t` in the Plonk paper.
let all_quotient_poly_chunks = timed!(
quotient_polys
.into_par_iter()
.flat_map(|mut quotient_poly| {
quotient_poly.trim();
quotient_poly.pad(quotient_degree).expect(
"The quotient polynomial doesn't have the right degree.\
This may be because the `Z`s polynomials are still too high degree.",
);
// Split t into degree-n chunks.
quotient_poly.chunks(degree)
})
.collect(),
"to compute quotient polys"
);
let quotient_polys_commitment = timed!(
ListPolynomialCommitment::new_from_polys(
all_quotient_poly_chunks,
fri_config.rate_bits,
PlonkPolynomials::QUOTIENT.blinding
),
"to commit to quotient polys"
);
challenger.observe_hash(&quotient_polys_commitment.merkle_tree.root);
let zeta = challenger.get_extension_challenge();
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::open_plonk(
&[
&prover_data.constants_sigmas_commitment,
&wires_commitment,
&plonk_zs_commitment,
&quotient_polys_commitment,
],
zeta,
&mut challenger,
common_data,
),
"to compute opening proofs"
);
info!(
"{:.3}s for overall witness & proof generation",
start_proof_gen.elapsed().as_secs_f32()
);
Proof {
wires_root: wires_commitment.merkle_tree.root,
plonk_zs_root: plonk_zs_commitment.merkle_tree.root,
quotient_polys_root: quotient_polys_commitment.merkle_tree.root,
openings,
opening_proof,
}
}
fn compute_zs<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
betas: &[F],
gammas: &[F],
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(witness, betas[i], gammas[i], prover_data, common_data))
.collect()
}
fn compute_z<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
beta: F,
gamma: F,
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> PolynomialValues<F> {
let subgroup = &prover_data.subgroup;
let mut plonk_z_points = vec![F::ONE];
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let mut numerator = F::ONE;
let mut denominator = F::ONE;
let s_sigmas = &prover_data.sigmas[i - 1];
for j in 0..common_data.config.num_routed_wires {
let wire_value = witness.get_wire(i - 1, j);
let k_i = k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
numerator *= wire_value + beta * s_id + gamma;
denominator *= wire_value + beta * s_sigma + gamma;
}
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * numerator / denominator);
}
plonk_z_points.into()
}
fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &'a ProverOnlyCircuitData<F, D>,
wires_commitment: &'a ListPolynomialCommitment<F>,
plonk_zs_commitment: &'a ListPolynomialCommitment<F>,
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialCoeffs<F>> {
let num_challenges = common_data.config.num_challenges;
let max_filtered_constraint_degree_bits = log2_ceil(common_data.max_filtered_constraint_degree);
assert!(
max_filtered_constraint_degree_bits <= common_data.config.rate_bits,
"Having constraints of degree higher than the rate is not supported yet. \
If we need this in the future, we can precompute the larger LDE before computing the `ListPolynomialCommitment`s."
);
// We reuse the LDE computed in `ListPolynomialCommitment` and extract every `step` points to get
// an LDE matching `max_filtered_constraint_degree`.
let step = 1 << (common_data.config.rate_bits - max_filtered_constraint_degree_bits);
// When opening the `Z`s polys at the "next" point in Plonk, need to look at the point `next_step`
// steps away since we work on an LDE of degree `max_filtered_constraint_degree`.
let next_step = 1 << max_filtered_constraint_degree_bits;
let points =
F::two_adic_subgroup(common_data.degree_bits + max_filtered_constraint_degree_bits);
let lde_size = points.len();
// Retrieve the LDE values at index `i`.
let get_at_index = |comm: &'a ListPolynomialCommitment<F>, i: usize| -> &'a [F] {
comm.get_lde_values(i * step)
};
let z_h_on_coset =
ZeroPolyOnCoset::new(common_data.degree_bits, max_filtered_constraint_degree_bits);
let quotient_values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let shifted_x = F::coset_shift() * x;
let i_next = (i + next_step) % lde_size;
let local_constants_sigmas = get_at_index(&prover_data.constants_sigmas_commitment, i);
let local_constants = &local_constants_sigmas[common_data.constants_range()];
let s_sigmas = &local_constants_sigmas[common_data.sigmas_range()];
let local_wires = get_at_index(wires_commitment, i);
let local_plonk_zs = get_at_index(plonk_zs_commitment, i);
let next_plonk_zs = get_at_index(plonk_zs_commitment, i_next);
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), num_challenges);
let vars = EvaluationVarsBase {
local_constants,
local_wires,
};
let mut quotient_values = eval_vanishing_poly_base(
common_data,
i,
shifted_x,
vars,
local_plonk_zs,
next_plonk_zs,
s_sigmas,
betas,
gammas,
alphas,
&z_h_on_coset,
);
let denominator_inv = z_h_on_coset.eval_inverse(i);
quotient_values
.iter_mut()
.for_each(|v| *v *= denominator_inv);
quotient_values
})
.collect();
transpose(&quotient_values)
.into_par_iter()
.map(PolynomialValues::new)
.map(|values| values.coset_ifft(F::coset_shift()))
.collect()
}