comparison gate

This commit is contained in:
Nicholas Ward 2021-09-13 12:13:32 -07:00
parent b5d35b3582
commit 9fa0500390
2 changed files with 481 additions and 0 deletions

480
src/gates/comparison.rs Normal file
View File

@ -0,0 +1,480 @@
use std::marker::PhantomData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, PrimeField, RichField};
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use crate::util::{ceil_div_usize, log2_ceil};
/// A gate for checking that one value is smaller than another.
#[derive(Clone, Debug)]
pub(crate) struct ComparisonGate<F: PrimeField + Extendable<D>, const D: usize> {
pub(crate) chunk_bits: usize,
pub(crate) num_copies: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> ComparisonGate<F, D> {
pub fn new(num_copies: usize, chunk_bits: usize) -> Self {
Self {
chunk_bits,
num_copies,
_phantom: PhantomData,
}
}
pub fn field_bits() -> usize {
log2_ceil(F::ORDER)
}
pub fn num_chunks(&self) -> usize {
ceil_div_usize(Self::field_bits(), self.chunk_bits)
}
pub fn new_from_config(config: CircuitConfig, chunk_bits: usize) -> Self {
let num_copies = Self::max_num_copies(config.num_routed_wires, chunk_bits);
Self::new(num_copies, chunk_bits)
}
pub fn max_num_copies(num_routed_wires: usize, chunk_bits: usize) -> usize {
let num_chunks = ceil_div_usize(Self::field_bits(), chunk_bits);
let wires_per_copy = 4 + chunk_bits + 4 * num_chunks;
num_routed_wires / wires_per_copy
}
pub fn wire_first_input(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
copy * (4 + self.chunk_bits + 4 * self.num_chunks())
}
pub fn wire_second_input(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
copy * (4 + self.chunk_bits + 4 * self.num_chunks()) + 1
}
pub fn wire_z_val(&self, copy: usize) -> usize {
copy * (4 + self.chunk_bits + 4 * self.num_chunks()) + 3
}
pub fn wire_z_bit(&self, copy: usize, bit_index: usize) -> usize {
debug_assert!(bit_index < self.chunk_bits + 1);
copy * (4 + self.chunk_bits + 4 * self.num_chunks()) + 4 + bit_index
}
pub fn wire_first_chunk_val(&self, copy: usize, chunk: usize) -> usize {
debug_assert!(copy < self.num_copies);
debug_assert!(chunk < self.num_chunks());
copy * (4 + self.chunk_bits + 4 * self.num_chunks()) + 4 + self.chunk_bits + chunk
}
pub fn wire_second_chunk_val(&self, copy: usize, chunk: usize) -> usize {
debug_assert!(copy < self.num_copies);
debug_assert!(chunk < self.num_chunks());
copy * (4 + self.chunk_bits + 4 * self.num_chunks())
+ 4
+ self.chunk_bits
+ self.num_chunks()
+ chunk
}
pub fn wire_equality_dummy(&self, copy: usize, chunk: usize) -> usize {
debug_assert!(copy < self.num_copies);
debug_assert!(chunk < self.num_chunks());
copy * (4 + self.chunk_bits + 4 * self.num_chunks())
+ 4
+ self.chunk_bits
+ 2 * self.num_chunks()
+ chunk
}
pub fn wire_chunks_equal(&self, copy: usize, chunk: usize) -> usize {
debug_assert!(copy < self.num_copies);
debug_assert!(chunk < self.num_chunks());
copy * (4 + self.chunk_bits + 4 * self.num_chunks())
+ 4
+ self.chunk_bits
+ 3 * self.num_chunks()
+ chunk
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ComparisonGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
for c in 0..self.num_copies {
let first_input = vars.local_wires[self.wire_first_input(c)];
let second_input = vars.local_wires[self.wire_second_input(c)];
// Get chunks and assert that they match
let first_chunks: Vec<F> = (0..self.num_chunks())
.map(|i| vars.local_wires[self.wire_first_chunk_val(c, i)])
.collect();
let second_chunks: Vec<F> = (0..self.num_chunks())
.map(|i| vars.local_wires[self.wire_second_chunk_val(c, i)])
.collect();
let chunk_base_powers = (0..self.chunk_bits)
.map(|i| F::TWO.exp_u64(i * self.chunk_bits as u64))
.collect();
let first_chunks_combined = first_chunks
.iter()
.zip(chunk_base_powers.iter())
.map(|(b, x)| b * x)
.fold(F::ZERO, |a, b| a + b);
let second_chunks_combined = second_chunks
.iter()
.zip(chunk_base_powers.iter())
.map(|(b, x)| b * x)
.fold(F::ZERO, |a, b| a + b);
constraints.push(first_chunks_combined - first_input);
constraints.push(second_chunks_combined - second_input);
// Get bits to assert they match the chosen chunk.
let powers_of_two: Vec<F> = (0..self.chunk_bits)
.map(|i| F::TWO.exp_u64(i as u64))
.collect();
let mut most_significant_diff =
first_chunks[self.num_chunks() - 1] - second_chunks[self.num_chunks() - 1];
// Find the chosen chunk.
for i in (0..self.num_chunks()).rev() {
let difference = first_chunks[i] - second_chunks[i];
let equality_dummy = vars.local_wires[self.wire_equality_dummy(c, i)];
let chunks_equal = vars.local_wires[self.wires_chunks_equal(c, i)];
// Two constraints identifying index.
constraints.push(difference * equality_dummy - (F::Extension::ONE - chunks_equal));
constraints.push(chunks_equal * difference);
let this_diff = first_chunks[i] - second_chunks[i];
most_significant_diff = chunks_equal * most_significant_diff
+ (F::Extension::ONE - chunks_equal) * this_diff;
}
constraints.push(first_bits_combined - most_significant_diff[0]);
constraints.push(second_bits_combined - most_significant_diff[1]);
let z_bits: Vec<F> = (0..self.chunk_size + 1)
.map(|i| vars.local_wires[self.wire_z_bit(c, i)])
.collect();
let powers_of_two: Vec<F> = (0..self.chunk_bits + 1)
.map(|i| F::TWO.exp_u64(i as u64))
.collect();
let z_bits_combined = z_bits
.iter()
.zip(powers_of_two.iter())
.map(|(b, x)| b * x)
.fold(F::ZERO, |a, b| a + b);
let two_n = F::TWO.exp_u64(self.chunk_bits);
let (x, y) = most_significant_diff;
constraints.push(z_bits_combined - (two_n + x - y));
constraints.push(z_bits[self.chunk_bits - 1]);
}
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
todo!()
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
todo!()
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
(0..self.num_copies)
.map(|c| {
let g: Box<dyn WitnessGenerator<F>> = Box::new(ComparisonGenerator::<F, D> {
gate_index,
gate: self.clone(),
copy: c,
});
g
})
.collect()
}
fn num_wires(&self) -> usize {
self.wire_switch_bool(self.num_copies - 1) + 1
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
4 * self.num_copies * self.chunk_bits
}
}
#[derive(Debug)]
struct ComparisonGenerator<F: RichField + Extendable<D>, const D: usize> {
gate_index: usize,
gate: ComparisonGate<F, D>,
copy: usize,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for ComparisonGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
let mut deps = Vec::new();
deps.push(local_target(self.gate.wire_first_input(self.copy)));
deps.push(local_target(self.gate.wire_second_input(self.copy)));
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let get_local_wire = |input| witness.get_wire(local_wire(input));
let first_input = get_local_wire(self.gate.wire_first_input(self.copy));
let second_input = get_local_wire(self.gate.wire_second_input(self.copy));
let field_bits = log2_ceil(F::ORDER);
let first_input_u64 = first_input.to_canonical_u64();
let second_input_u64 = second_input.to_canonical_u64();
let first_input_bits: Vec<F> = (0..field_bits)
.scan(first_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let second_input_bits: Vec<F> = (0..field_bits)
.scan(second_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let powers_of_two: Vec<F> = (0..self.gate.chunk_bits)
.map(|i| F::TWO.exp_u64(i as u64))
.collect();
let first_input_chunks: Vec<F> = first_input_bits
.chunks(self.gate.chunk_bits)
.map(|bits| {
bits.iter()
.zip(powers_of_two.iter())
.map(|(b, x)| *b * *x)
.fold(F::ZERO, |a, b| a + b)
})
.collect();
let second_input_chunks: Vec<F> = second_input_bits
.chunks(self.gate.chunk_bits)
.map(|bits| {
bits.iter()
.zip(powers_of_two.iter())
.map(|(b, x)| *b * *x)
.fold(F::ZERO, |a, b| a + b)
})
.collect();
let chunks_equal: Vec<F> = (0..self.gate.num_chunks())
.map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i]))
.collect();
let equality_dummies: Vec<F> = first_input_chunks
.iter()
.zip(second_input_chunks.iter())
.map(|(f, s)| if *f == *s { F::ONE } else { F::ONE / (*f - *s) })
.collect();
let z = F::TWO.exp_u64(self.gate.chunk_bits as u64) + first_input - second_input;
let z_bits: Vec<F> = (0..self.gate.chunk_bits + 1)
.scan(z.to_canonical_u64(), |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
out_buffer.set_wire(local_wire(self.gate.wire_z_val(self.copy)), z);
for b in 0..self.gate.chunk_bits + 1 {
out_buffer.set_wire(local_wire(self.gate.wire_z_bit(c, b)), z_bits[b]);
}
for i in 0..self.gate.num_chunks() {
out_buffer.set_wire(
local_wire(self.gate.wire_first_chunk_val(self.copy, i)),
first_input_chunks[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_second_chunk_val(self.copy, i)),
second_input_chunks[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_chunks_equal(self.copy, i)),
chunks_equal[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_equality_dummy(self.copy, i)),
equality_dummies[i],
);
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field_types::Field;
use crate::gates::comparison::ComparisonGate;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
type CG = ComparisonGate<CrandallField, 4>;
let num_copies = 3;
let chunk_bits = 3;
let gate = CG {
chunk_bits,
num_copies,
_phantom: PhantomData,
};
assert_eq!(gate.wire_first_input(0, 0), 0);
assert_eq!(gate.wire_first_input(0, 2), 2);
assert_eq!(gate.wire_second_input(0, 0), 3);
assert_eq!(gate.wire_second_input(0, 2), 5);
assert_eq!(gate.wire_first_output(0, 0), 6);
assert_eq!(gate.wire_second_output(0, 2), 11);
assert_eq!(gate.wire_switch_bool(0), 12);
assert_eq!(gate.wire_first_input(1, 0), 13);
assert_eq!(gate.wire_second_output(1, 2), 24);
assert_eq!(gate.wire_switch_bool(1), 25);
assert_eq!(gate.wire_first_input(2, 0), 26);
assert_eq!(gate.wire_second_output(2, 2), 37);
assert_eq!(gate.wire_switch_bool(2), 38);
}
#[test]
fn low_degree() {
test_low_degree::<CrandallField, _, 4>(SwitchGate::<_, 4>::new_from_config(
CircuitConfig::large_config(),
3,
));
}
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<CrandallField, _, 4>(SwitchGate::<_, 4>::new_from_config(
CircuitConfig::large_config(),
3,
))
}
#[test]
fn test_gate_constraint() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
const CHUNK_SIZE: usize = 4;
let num_copies = 3;
/// Returns the local wires for a switch gate given the inputs and the switch booleans.
fn get_wires(
first_inputs: Vec<Vec<F>>,
second_inputs: Vec<Vec<F>>,
switch_bools: Vec<bool>,
) -> Vec<FF> {
let num_copies = first_inputs.len();
let mut v = Vec::new();
for c in 0..num_copies {
let switch = switch_bools[c];
let mut first_input_chunk = Vec::with_capacity(CHUNK_SIZE);
let mut second_input_chunk = Vec::with_capacity(CHUNK_SIZE);
let mut first_output_chunk = Vec::with_capacity(CHUNK_SIZE);
let mut second_output_chunk = Vec::with_capacity(CHUNK_SIZE);
for e in 0..CHUNK_SIZE {
let first_input = first_inputs[c][e];
let second_input = second_inputs[c][e];
let first_output = if switch { second_input } else { first_input };
let second_output = if switch { first_input } else { second_input };
first_input_chunk.push(first_input);
second_input_chunk.push(second_input);
first_output_chunk.push(first_output);
second_output_chunk.push(second_output);
}
v.append(&mut first_input_chunk);
v.append(&mut second_input_chunk);
v.append(&mut first_output_chunk);
v.append(&mut second_output_chunk);
v.push(F::from_bool(switch));
}
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
}
let first_inputs: Vec<Vec<F>> = (0..num_copies).map(|_| F::rand_vec(CHUNK_SIZE)).collect();
let second_inputs: Vec<Vec<F>> = (0..num_copies).map(|_| F::rand_vec(CHUNK_SIZE)).collect();
let switch_bools = vec![true, false, true];
let gate = SwitchGate::<F, D> {
chunk_bits: CHUNK_SIZE,
num_copies,
_phantom: PhantomData,
};
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(first_inputs, second_inputs, switch_bools),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}

View File

@ -3,6 +3,7 @@
pub mod arithmetic;
pub mod base_sum;
pub mod comparison;
pub mod constant;
pub mod exponentiation;
pub mod gate;