Merge pull request #708 from mir-protocol/per_table_recursion

Per table recursion
This commit is contained in:
wborgeaud 2022-10-07 10:03:07 +02:00 committed by GitHub
commit 992692b04d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 824 additions and 244 deletions

View File

@ -65,7 +65,7 @@ impl<F: RichField + Extendable<D>, const D: usize> AllStark<F, D> {
}
}
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Table {
Cpu = 0,
Keccak = 1,
@ -185,12 +185,12 @@ mod tests {
use plonky2::field::types::{Field, PrimeField64};
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::circuit_data::{CircuitConfig, VerifierCircuitData};
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::util::timing::TimingTree;
use rand::{thread_rng, Rng};
use crate::all_stark::AllStark;
use crate::all_stark::{AllStark, NUM_TABLES};
use crate::config::StarkConfig;
use crate::cpu::cpu_stark::CpuStark;
use crate::cpu::kernel::aggregator::KERNEL;
@ -203,8 +203,10 @@ mod tests {
use crate::memory::NUM_CHANNELS;
use crate::proof::{AllProof, PublicValues};
use crate::prover::prove_with_traces;
use crate::recursive_verifier::tests::recursively_verify_all_proof;
use crate::recursive_verifier::{
add_virtual_all_proof, set_all_proof_target, verify_proof_circuit,
add_virtual_recursive_all_proof, all_verifier_data_recursive_stark_proof,
set_recursive_all_proof_target, RecursiveAllProof,
};
use crate::stark::Stark;
use crate::util::{limb_from_bits_le, trace_rows_to_poly_values};
@ -232,7 +234,7 @@ mod tests {
) -> Vec<PolynomialValues<F>> {
keccak_memory_stark.generate_trace(
vec![],
1 << config.fri_config.cap_height,
config.fri_config.num_cap_elements(),
&mut TimingTree::default(),
)
}
@ -359,6 +361,7 @@ mod tests {
let row: &mut cpu::columns::CpuColumnsView<F> = cpu_trace_rows[clock].borrow_mut();
row.clock = F::from_canonical_usize(clock);
dbg!(channel, row.mem_channels.len());
let channel = &mut row.mem_channels[channel];
channel.used = F::ONE;
channel.is_read = memory_trace[memory::columns::IS_READ].values[i];
@ -754,34 +757,42 @@ mod tests {
let (all_stark, proof) = get_proof(&config)?;
verify_proof(all_stark.clone(), proof.clone(), &config)?;
recursive_proof(all_stark, proof, &config, true)
recursive_proof(all_stark, proof, &config)
}
fn recursive_proof(
inner_all_stark: AllStark<F, D>,
inner_proof: AllProof<F, C, D>,
inner_config: &StarkConfig,
print_gate_counts: bool,
) -> Result<()> {
let circuit_config = CircuitConfig::standard_recursion_config();
let recursive_all_proof = recursively_verify_all_proof(
&inner_all_stark,
&inner_proof,
inner_config,
&circuit_config,
)?;
let verifier_data: [VerifierCircuitData<F, C, D>; NUM_TABLES] =
all_verifier_data_recursive_stark_proof(
&inner_all_stark,
inner_proof.degree_bits(inner_config),
inner_config,
&circuit_config,
);
let circuit_config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(circuit_config);
let mut pw = PartialWitness::new();
let degree_bits = inner_proof.degree_bits(inner_config);
let nums_ctl_zs = inner_proof.nums_ctl_zs();
let pt = add_virtual_all_proof(
let recursive_all_proof_target =
add_virtual_recursive_all_proof(&mut builder, &verifier_data);
set_recursive_all_proof_target(&mut pw, &recursive_all_proof_target, &recursive_all_proof);
RecursiveAllProof::verify_circuit(
&mut builder,
&inner_all_stark,
recursive_all_proof_target,
&verifier_data,
inner_all_stark.cross_table_lookups,
inner_config,
&degree_bits,
&nums_ctl_zs,
);
set_all_proof_target(&mut pw, &pt, &inner_proof, builder.zero());
verify_proof_circuit::<F, C, D>(&mut builder, inner_all_stark, pt, inner_config);
if print_gate_counts {
builder.print_gate_counts(0);
}
let data = builder.build::<C>();
let proof = data.prove(pw)?;

View File

@ -191,6 +191,15 @@ impl<F: Field> CrossTableLookup<F> {
default,
}
}
pub(crate) fn num_ctl_zs(ctls: &[Self], table: Table, num_challenges: usize) -> usize {
let mut num_ctls = 0;
for ctl in ctls {
let all_tables = std::iter::once(&ctl.looked_table).chain(&ctl.looking_tables);
num_ctls += all_tables.filter(|twc| twc.table == table).count();
}
num_ctls * num_challenges
}
}
/// Cross-table lookup data for one table.
@ -450,24 +459,24 @@ pub struct CtlCheckVarsTarget<'a, F: Field, const D: usize> {
}
impl<'a, F: Field, const D: usize> CtlCheckVarsTarget<'a, F, D> {
pub(crate) fn from_proofs(
proofs: &[StarkProofTarget<D>; NUM_TABLES],
pub(crate) fn from_proof(
table: Table,
proof: &StarkProofTarget<D>,
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<Target>,
num_permutation_zs: &[usize; NUM_TABLES],
) -> [Vec<Self>; NUM_TABLES] {
let mut ctl_zs = proofs
.iter()
.zip(num_permutation_zs)
.map(|(p, &num_perms)| {
let openings = &p.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_perms);
let ctl_zs_next = openings.permutation_ctl_zs_next.iter().skip(num_perms);
ctl_zs.zip(ctl_zs_next)
})
.collect::<Vec<_>>();
num_permutation_zs: usize,
) -> Vec<Self> {
let mut ctl_zs = {
let openings = &proof.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_permutation_zs);
let ctl_zs_next = openings
.permutation_ctl_zs_next
.iter()
.skip(num_permutation_zs);
ctl_zs.zip(ctl_zs_next)
};
let mut ctl_vars_per_table = [0; NUM_TABLES].map(|_| vec![]);
let mut ctl_vars = vec![];
for CrossTableLookup {
looking_tables,
looked_table,
@ -475,28 +484,33 @@ impl<'a, F: Field, const D: usize> CtlCheckVarsTarget<'a, F, D> {
} in cross_table_lookups
{
for &challenges in &ctl_challenges.challenges {
for table in looking_tables {
let (looking_z, looking_z_next) = ctl_zs[table.table as usize].next().unwrap();
ctl_vars_per_table[table.table as usize].push(Self {
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns: &table.columns,
filter_column: &table.filter_column,
});
for looking_table in looking_tables {
if looking_table.table == table {
let (looking_z, looking_z_next) = ctl_zs.next().unwrap();
ctl_vars.push(Self {
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns: &looking_table.columns,
filter_column: &looking_table.filter_column,
});
}
}
let (looked_z, looked_z_next) = ctl_zs[looked_table.table as usize].next().unwrap();
ctl_vars_per_table[looked_table.table as usize].push(Self {
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns: &looked_table.columns,
filter_column: &looked_table.filter_column,
});
if looked_table.table == table {
let (looked_z, looked_z_next) = ctl_zs.next().unwrap();
ctl_vars.push(Self {
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns: &looked_table.columns,
filter_column: &looked_table.filter_column,
});
}
}
}
ctl_vars_per_table
assert!(ctl_zs.next().is_none());
ctl_vars
}
}
@ -568,18 +582,12 @@ pub(crate) fn verify_cross_table_lookups<
const D: usize,
>(
cross_table_lookups: Vec<CrossTableLookup<F>>,
proofs: &[StarkProof<F, C, D>; NUM_TABLES],
ctl_zs_lasts: [Vec<F>; NUM_TABLES],
degrees_bits: [usize; NUM_TABLES],
challenges: GrandProductChallengeSet<F>,
config: &StarkConfig,
) -> Result<()> {
let degrees_bits = proofs
.iter()
.map(|p| p.recover_degree_bits(config))
.collect::<Vec<_>>();
let mut ctl_zs_openings = proofs
.iter()
.map(|p| p.openings.ctl_zs_last.iter())
.collect::<Vec<_>>();
let mut ctl_zs_openings = ctl_zs_lasts.iter().map(|v| v.iter()).collect::<Vec<_>>();
for (
i,
CrossTableLookup {
@ -626,18 +634,12 @@ pub(crate) fn verify_cross_table_lookups_circuit<
>(
builder: &mut CircuitBuilder<F, D>,
cross_table_lookups: Vec<CrossTableLookup<F>>,
proofs: &[StarkProofTarget<D>; NUM_TABLES],
ctl_zs_lasts: [Vec<Target>; NUM_TABLES],
degrees_bits: [usize; NUM_TABLES],
challenges: GrandProductChallengeSet<Target>,
inner_config: &StarkConfig,
) {
let degrees_bits = proofs
.iter()
.map(|p| p.recover_degree_bits(inner_config))
.collect::<Vec<_>>();
let mut ctl_zs_openings = proofs
.iter()
.map(|p| p.openings.ctl_zs_last.iter())
.collect::<Vec<_>>();
let mut ctl_zs_openings = ctl_zs_lasts.iter().map(|v| v.iter()).collect::<Vec<_>>();
for (
i,
CrossTableLookup {

View File

@ -116,7 +116,7 @@ pub(crate) fn generate_traces<F: RichField + Extendable<D>, const D: usize>(
let keccak_trace = all_stark.keccak_stark.generate_trace(keccak_inputs, timing);
let keccak_memory_trace = all_stark.keccak_memory_stark.generate_trace(
keccak_memory_inputs,
1 << config.fri_config.cap_height,
config.fri_config.num_cap_elements(),
timing,
);
let logic_trace = all_stark.logic_stark.generate_trace(logic_ops, timing);

View File

@ -5,11 +5,11 @@ use plonky2::iop::challenger::{Challenger, RecursiveChallenger};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use crate::all_stark::AllStark;
use crate::all_stark::{AllStark, NUM_TABLES};
use crate::config::StarkConfig;
use crate::permutation::{
get_grand_product_challenge_set, get_grand_product_challenge_set_target,
get_n_grand_product_challenge_sets, get_n_grand_product_challenge_sets_target,
get_grand_product_challenge_set, get_n_grand_product_challenge_sets,
get_n_grand_product_challenge_sets_target,
};
use crate::proof::*;
@ -36,6 +36,7 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> A
AllProofChallenges {
stark_challenges: std::array::from_fn(|i| {
challenger.compact();
self.stark_proofs[i].get_challenges(
&mut challenger,
num_permutation_zs[i] > 0,
@ -46,40 +47,40 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> A
ctl_challenges,
}
}
}
impl<const D: usize> AllProofTarget<D> {
pub(crate) fn get_challenges<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>>(
#[allow(unused)] // TODO: should be used soon
pub(crate) fn get_challenger_states(
&self,
builder: &mut CircuitBuilder<F, D>,
all_stark: &AllStark<F, D>,
config: &StarkConfig,
) -> AllProofChallengesTarget<D>
where
C::Hasher: AlgebraicHasher<F>,
{
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::new(builder);
) -> AllChallengerState<F, D> {
let mut challenger = Challenger::<F, C::Hasher>::new();
for proof in &self.stark_proofs {
challenger.observe_cap(&proof.trace_cap);
}
// TODO: Observe public values.
let ctl_challenges =
get_grand_product_challenge_set_target(builder, &mut challenger, config.num_challenges);
get_grand_product_challenge_set(&mut challenger, config.num_challenges);
let num_permutation_zs = all_stark.nums_permutation_zs(config);
let num_permutation_batch_sizes = all_stark.permutation_batch_sizes();
AllProofChallengesTarget {
stark_challenges: std::array::from_fn(|i| {
self.stark_proofs[i].get_challenges::<F, C>(
builder,
&mut challenger,
num_permutation_zs[i] > 0,
num_permutation_batch_sizes[i],
config,
)
}),
let mut challenger_states = vec![challenger.compact()];
for i in 0..NUM_TABLES {
self.stark_proofs[i].get_challenges(
&mut challenger,
num_permutation_zs[i] > 0,
num_permutation_batch_sizes[i],
config,
);
challenger_states.push(challenger.compact());
}
AllChallengerState {
states: challenger_states.try_into().unwrap(),
ctl_challenges,
}
}

View File

@ -1,5 +1,7 @@
//! Permutation arguments.
use std::fmt::Debug;
use itertools::Itertools;
use maybe_rayon::*;
use plonky2::field::batch_util::batch_multiply_inplace;
@ -42,14 +44,14 @@ impl PermutationPair {
}
/// A single instance of a permutation check protocol.
pub(crate) struct PermutationInstance<'a, T: Copy> {
pub(crate) struct PermutationInstance<'a, T: Copy + Eq + PartialEq + Debug> {
pub(crate) pair: &'a PermutationPair,
pub(crate) challenge: GrandProductChallenge<T>,
}
/// Randomness for a single instance of a permutation check protocol.
#[derive(Copy, Clone)]
pub(crate) struct GrandProductChallenge<T: Copy> {
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallenge<T: Copy + Eq + PartialEq + Debug> {
/// Randomness used to combine multiple columns into one.
pub(crate) beta: T,
/// Random offset that's added to the beta-reduced column values.
@ -92,8 +94,8 @@ impl GrandProductChallenge<Target> {
}
/// Like `PermutationChallenge`, but with `num_challenges` copies to boost soundness.
#[derive(Clone)]
pub(crate) struct GrandProductChallengeSet<T: Copy> {
#[derive(Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallengeSet<T: Copy + Eq + PartialEq + Debug> {
pub(crate) challenges: Vec<GrandProductChallenge<T>>,
}
@ -261,7 +263,7 @@ pub(crate) fn get_n_grand_product_challenge_sets_target<
/// Before batching, each permutation pair leads to `num_challenges` permutation arguments, so we
/// start with the cartesian product of `permutation_pairs` and `0..num_challenges`. Then we
/// chunk these arguments based on our batch size.
pub(crate) fn get_permutation_batches<'a, T: Copy>(
pub(crate) fn get_permutation_batches<'a, T: Copy + Eq + PartialEq + Debug>(
permutation_pairs: &'a [PermutationPair],
permutation_challenge_sets: &[GrandProductChallengeSet<T>],
num_challenges: usize,

View File

@ -8,6 +8,7 @@ use plonky2::fri::structure::{
FriOpeningBatch, FriOpeningBatchTarget, FriOpenings, FriOpeningsTarget,
};
use plonky2::hash::hash_types::{MerkleCapTarget, RichField};
use plonky2::hash::hashing::SPONGE_WIDTH;
use plonky2::hash::merkle_tree::MerkleCap;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
@ -28,10 +29,6 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> A
pub fn degree_bits(&self, config: &StarkConfig) -> [usize; NUM_TABLES] {
std::array::from_fn(|i| self.stark_proofs[i].recover_degree_bits(config))
}
pub fn nums_ctl_zs(&self) -> [usize; NUM_TABLES] {
std::array::from_fn(|i| self.stark_proofs[i].openings.ctl_zs_last.len())
}
}
pub(crate) struct AllProofChallenges<F: RichField + Extendable<D>, const D: usize> {
@ -39,6 +36,14 @@ pub(crate) struct AllProofChallenges<F: RichField + Extendable<D>, const D: usiz
pub ctl_challenges: GrandProductChallengeSet<F>,
}
#[allow(unused)] // TODO: should be used soon
pub(crate) struct AllChallengerState<F: RichField + Extendable<D>, const D: usize> {
/// Sponge state of the challenger before starting each proof,
/// along with the final state after all proofs are done. This final state isn't strictly needed.
pub states: [[F; SPONGE_WIDTH]; NUM_TABLES + 1],
pub ctl_challenges: GrandProductChallengeSet<F>,
}
pub struct AllProofTarget<const D: usize> {
pub stark_proofs: [StarkProofTarget<D>; NUM_TABLES],
pub public_values: PublicValuesTarget,
@ -94,11 +99,6 @@ pub struct BlockMetadataTarget {
pub block_base_fee: Target,
}
pub(crate) struct AllProofChallengesTarget<const D: usize> {
pub stark_challenges: [StarkProofChallengesTarget<D>; NUM_TABLES],
pub ctl_challenges: GrandProductChallengeSet<Target>,
}
#[derive(Debug, Clone)]
pub struct StarkProof<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> {
/// Merkle cap of LDEs of trace values.
@ -123,6 +123,10 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> S
let lde_bits = config.fri_config.cap_height + initial_merkle_proof.siblings.len();
lde_bits - config.fri_config.rate_bits
}
pub fn num_ctl_zs(&self) -> usize {
self.openings.ctl_zs_last.len()
}
}
pub struct StarkProofTarget<const D: usize> {

View File

@ -201,6 +201,8 @@ where
"FRI total reduction arity is too large.",
);
challenger.compact();
// Permutation arguments.
let permutation_challenges = stark.uses_permutation_args().then(|| {
get_n_grand_product_challenge_sets(

View File

@ -1,29 +1,44 @@
use std::fmt::Debug;
use anyhow::{ensure, Result};
use itertools::Itertools;
use plonky2::field::extension::Extendable;
use plonky2::field::types::Field;
use plonky2::fri::witness_util::set_fri_proof_target;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::hash_types::{HashOut, RichField};
use plonky2::hash::hashing::SPONGE_WIDTH;
use plonky2::iop::challenger::{Challenger, RecursiveChallenger};
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::iop::witness::Witness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, VerifierCircuitData, VerifierCircuitTarget};
use plonky2::plonk::config::Hasher;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2::util::reducing::ReducingFactorTarget;
use plonky2::with_context;
use crate::all_stark::NUM_TABLES;
use crate::config::StarkConfig;
use crate::constraint_consumer::RecursiveConstraintConsumer;
use crate::cpu::cpu_stark::CpuStark;
use crate::cross_table_lookup::{verify_cross_table_lookups_circuit, CtlCheckVarsTarget};
use crate::cross_table_lookup::{
verify_cross_table_lookups, verify_cross_table_lookups_circuit, CrossTableLookup,
CtlCheckVarsTarget,
};
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_memory::keccak_memory_stark::KeccakMemoryStark;
use crate::logic::LogicStark;
use crate::memory::memory_stark::MemoryStark;
use crate::permutation::PermutationCheckDataTarget;
use crate::permutation::{
get_grand_product_challenge_set, get_grand_product_challenge_set_target, GrandProductChallenge,
GrandProductChallengeSet, PermutationCheckDataTarget,
};
use crate::proof::{
AllProof, AllProofChallengesTarget, AllProofTarget, BlockMetadata, BlockMetadataTarget,
PublicValues, PublicValuesTarget, StarkOpeningSetTarget, StarkProof,
StarkProofChallengesTarget, StarkProofTarget, TrieRoots, TrieRootsTarget,
AllProof, AllProofTarget, BlockMetadata, BlockMetadataTarget, PublicValues, PublicValuesTarget,
StarkOpeningSetTarget, StarkProof, StarkProofChallengesTarget, StarkProofTarget, TrieRoots,
TrieRootsTarget,
};
use crate::stark::Stark;
use crate::util::h160_limbs;
@ -34,118 +49,342 @@ use crate::{
util::h256_limbs,
};
pub fn verify_proof_circuit<
/// Table-wise recursive proofs of an `AllProof`.
pub struct RecursiveAllProof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
> {
pub recursive_proofs: [ProofWithPublicInputs<F, C, D>; NUM_TABLES],
}
pub struct RecursiveAllProofTargetWithData<const D: usize> {
pub recursive_proofs: [ProofWithPublicInputsTarget<D>; NUM_TABLES],
pub verifier_data: [VerifierCircuitTarget; NUM_TABLES],
}
struct PublicInputs<T: Copy + Eq + PartialEq + Debug> {
trace_cap: Vec<Vec<T>>,
ctl_zs_last: Vec<T>,
ctl_challenges: GrandProductChallengeSet<T>,
challenger_state_before: [T; SPONGE_WIDTH],
challenger_state_after: [T; SPONGE_WIDTH],
}
/// Similar to the unstable `Iterator::next_chunk`. Could be replaced with that when it's stable.
fn next_chunk<T: Debug, const N: usize>(iter: &mut impl Iterator<Item = T>) -> [T; N] {
(0..N)
.flat_map(|_| iter.next())
.collect_vec()
.try_into()
.expect("Not enough elements")
}
impl<T: Copy + Eq + PartialEq + Debug> PublicInputs<T> {
fn from_vec(v: &[T], config: &StarkConfig) -> Self {
let mut iter = v.iter().copied();
let trace_cap = (0..1 << config.fri_config.cap_height)
.map(|_| next_chunk::<_, 4>(&mut iter).to_vec())
.collect();
let ctl_challenges = GrandProductChallengeSet {
challenges: (0..config.num_challenges)
.map(|_| GrandProductChallenge {
beta: iter.next().unwrap(),
gamma: iter.next().unwrap(),
})
.collect(),
};
let challenger_state_before = next_chunk(&mut iter);
let challenger_state_after = next_chunk(&mut iter);
let ctl_zs_last = iter.collect();
Self {
trace_cap,
ctl_zs_last,
ctl_challenges,
challenger_state_before,
challenger_state_after,
}
}
}
impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>
RecursiveAllProof<F, C, D>
{
/// Verify every recursive proof.
pub fn verify(
self,
verifier_data: &[VerifierCircuitData<F, C, D>; NUM_TABLES],
cross_table_lookups: Vec<CrossTableLookup<F>>,
inner_config: &StarkConfig,
) -> Result<()>
where
[(); C::Hasher::HASH_SIZE]:,
{
let pis: [_; NUM_TABLES] = std::array::from_fn(|i| {
PublicInputs::from_vec(&self.recursive_proofs[i].public_inputs, inner_config)
});
let mut challenger = Challenger::<F, C::Hasher>::new();
for pi in &pis {
for h in &pi.trace_cap {
challenger.observe_elements(h);
}
}
let ctl_challenges =
get_grand_product_challenge_set(&mut challenger, inner_config.num_challenges);
// Check that the correct CTL challenges are used in every proof.
for pi in &pis {
ensure!(ctl_challenges == pi.ctl_challenges);
}
let state = challenger.compact();
ensure!(state == pis[0].challenger_state_before);
// Check that the challenger state is consistent between proofs.
for i in 1..NUM_TABLES {
ensure!(pis[i].challenger_state_before == pis[i - 1].challenger_state_after);
}
// Verify the CTL checks.
let degrees_bits = std::array::from_fn(|i| verifier_data[i].common.degree_bits);
verify_cross_table_lookups::<F, C, D>(
cross_table_lookups,
pis.map(|p| p.ctl_zs_last),
degrees_bits,
ctl_challenges,
inner_config,
)?;
// Verify the proofs.
for (proof, verifier_data) in self.recursive_proofs.into_iter().zip(verifier_data) {
verifier_data.verify(proof)?;
}
Ok(())
}
/// Recursively verify every recursive proof.
pub fn verify_circuit(
builder: &mut CircuitBuilder<F, D>,
recursive_all_proof_target: RecursiveAllProofTargetWithData<D>,
verifier_data: &[VerifierCircuitData<F, C, D>; NUM_TABLES],
cross_table_lookups: Vec<CrossTableLookup<F>>,
inner_config: &StarkConfig,
) where
[(); C::Hasher::HASH_SIZE]:,
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>,
{
let RecursiveAllProofTargetWithData {
recursive_proofs,
verifier_data: verifier_data_target,
} = recursive_all_proof_target;
let pis: [_; NUM_TABLES] = std::array::from_fn(|i| {
PublicInputs::from_vec(&recursive_proofs[i].public_inputs, inner_config)
});
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::new(builder);
for pi in &pis {
for h in &pi.trace_cap {
challenger.observe_elements(h);
}
}
let ctl_challenges = get_grand_product_challenge_set_target(
builder,
&mut challenger,
inner_config.num_challenges,
);
// Check that the correct CTL challenges are used in every proof.
for pi in &pis {
for i in 0..inner_config.num_challenges {
builder.connect(
ctl_challenges.challenges[i].beta,
pi.ctl_challenges.challenges[i].beta,
);
builder.connect(
ctl_challenges.challenges[i].gamma,
pi.ctl_challenges.challenges[i].gamma,
);
}
}
let state = challenger.compact(builder);
for k in 0..SPONGE_WIDTH {
builder.connect(state[k], pis[0].challenger_state_before[k]);
}
// Check that the challenger state is consistent between proofs.
for i in 1..NUM_TABLES {
for k in 0..SPONGE_WIDTH {
builder.connect(
pis[i].challenger_state_before[k],
pis[i - 1].challenger_state_after[k],
);
}
}
// Verify the CTL checks.
let degrees_bits = std::array::from_fn(|i| verifier_data[i].common.degree_bits);
verify_cross_table_lookups_circuit::<F, C, D>(
builder,
cross_table_lookups,
pis.map(|p| p.ctl_zs_last),
degrees_bits,
ctl_challenges,
inner_config,
);
for (i, (recursive_proof, verifier_data_target)) in recursive_proofs
.into_iter()
.zip(verifier_data_target)
.enumerate()
{
builder.verify_proof(
recursive_proof,
&verifier_data_target,
&verifier_data[i].common,
);
}
}
}
/// Returns the verifier data for the recursive Stark circuit.
fn verifier_data_recursive_stark_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
const D: usize,
>(
table: Table,
stark: S,
degree_bits: usize,
cross_table_lookups: &[CrossTableLookup<F>],
inner_config: &StarkConfig,
circuit_config: &CircuitConfig,
) -> VerifierCircuitData<F, C, D>
where
[(); S::COLUMNS]:,
[(); C::Hasher::HASH_SIZE]:,
C::Hasher: AlgebraicHasher<F>,
{
let mut builder = CircuitBuilder::<F, D>::new(circuit_config.clone());
let num_permutation_zs = stark.num_permutation_batches(inner_config);
let num_permutation_batch_size = stark.permutation_batch_size();
let num_ctl_zs =
CrossTableLookup::num_ctl_zs(cross_table_lookups, table, inner_config.num_challenges);
let proof_target =
add_virtual_stark_proof(&mut builder, &stark, inner_config, degree_bits, num_ctl_zs);
builder.register_public_inputs(
&proof_target
.trace_cap
.0
.iter()
.flat_map(|h| h.elements)
.collect::<Vec<_>>(),
);
let ctl_challenges_target = GrandProductChallengeSet {
challenges: (0..inner_config.num_challenges)
.map(|_| GrandProductChallenge {
beta: builder.add_virtual_public_input(),
gamma: builder.add_virtual_public_input(),
})
.collect(),
};
let ctl_vars = CtlCheckVarsTarget::from_proof(
table,
&proof_target,
cross_table_lookups,
&ctl_challenges_target,
num_permutation_zs,
);
let challenger_state = std::array::from_fn(|_| builder.add_virtual_public_input());
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::from_state(challenger_state);
let challenges = proof_target.get_challenges::<F, C>(
&mut builder,
&mut challenger,
num_permutation_zs > 0,
num_permutation_batch_size,
inner_config,
);
let challenger_state = challenger.compact(&mut builder);
builder.register_public_inputs(&challenger_state);
builder.register_public_inputs(&proof_target.openings.ctl_zs_last);
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
&mut builder,
&stark,
&proof_target,
&challenges,
&ctl_vars,
inner_config,
);
builder.build_verifier::<C>()
}
/// Returns the recursive Stark circuit verifier data for every Stark in `AllStark`.
pub fn all_verifier_data_recursive_stark_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
all_stark: AllStark<F, D>,
all_proof: AllProofTarget<D>,
all_stark: &AllStark<F, D>,
degree_bits: [usize; NUM_TABLES],
inner_config: &StarkConfig,
) where
circuit_config: &CircuitConfig,
) -> [VerifierCircuitData<F, C, D>; NUM_TABLES]
where
[(); CpuStark::<F, D>::COLUMNS]:,
[(); KeccakStark::<F, D>::COLUMNS]:,
[(); KeccakMemoryStark::<F, D>::COLUMNS]:,
[(); LogicStark::<F, D>::COLUMNS]:,
[(); MemoryStark::<F, D>::COLUMNS]:,
[(); C::Hasher::HASH_SIZE]:,
C::Hasher: AlgebraicHasher<F>,
{
let AllProofChallengesTarget {
stark_challenges,
ctl_challenges,
} = all_proof.get_challenges::<F, C>(builder, &all_stark, inner_config);
let nums_permutation_zs = all_stark.nums_permutation_zs(inner_config);
let AllStark {
cpu_stark,
keccak_stark,
keccak_memory_stark,
logic_stark,
memory_stark,
cross_table_lookups,
} = all_stark;
let ctl_vars_per_table = CtlCheckVarsTarget::from_proofs(
&all_proof.stark_proofs,
&cross_table_lookups,
&ctl_challenges,
&nums_permutation_zs,
);
with_context!(
builder,
"verify CPU proof",
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
builder,
cpu_stark,
&all_proof.stark_proofs[Table::Cpu as usize],
&stark_challenges[Table::Cpu as usize],
&ctl_vars_per_table[Table::Cpu as usize],
[
verifier_data_recursive_stark_proof(
Table::Cpu,
all_stark.cpu_stark,
degree_bits[Table::Cpu as usize],
&all_stark.cross_table_lookups,
inner_config,
)
);
with_context!(
builder,
"verify Keccak proof",
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
builder,
keccak_stark,
&all_proof.stark_proofs[Table::Keccak as usize],
&stark_challenges[Table::Keccak as usize],
&ctl_vars_per_table[Table::Keccak as usize],
circuit_config,
),
verifier_data_recursive_stark_proof(
Table::Keccak,
all_stark.keccak_stark,
degree_bits[Table::Keccak as usize],
&all_stark.cross_table_lookups,
inner_config,
)
);
with_context!(
builder,
"verify Keccak memory proof",
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
builder,
keccak_memory_stark,
&all_proof.stark_proofs[Table::KeccakMemory as usize],
&stark_challenges[Table::KeccakMemory as usize],
&ctl_vars_per_table[Table::KeccakMemory as usize],
circuit_config,
),
verifier_data_recursive_stark_proof(
Table::KeccakMemory,
all_stark.keccak_memory_stark,
degree_bits[Table::KeccakMemory as usize],
&all_stark.cross_table_lookups,
inner_config,
)
);
with_context!(
builder,
"verify logic proof",
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
builder,
logic_stark,
&all_proof.stark_proofs[Table::Logic as usize],
&stark_challenges[Table::Logic as usize],
&ctl_vars_per_table[Table::Logic as usize],
circuit_config,
),
verifier_data_recursive_stark_proof(
Table::Logic,
all_stark.logic_stark,
degree_bits[Table::Logic as usize],
&all_stark.cross_table_lookups,
inner_config,
)
);
with_context!(
builder,
"verify memory proof",
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
builder,
memory_stark,
&all_proof.stark_proofs[Table::Memory as usize],
&stark_challenges[Table::Memory as usize],
&ctl_vars_per_table[Table::Memory as usize],
circuit_config,
),
verifier_data_recursive_stark_proof(
Table::Memory,
all_stark.memory_stark,
degree_bits[Table::Memory as usize],
&all_stark.cross_table_lookups,
inner_config,
)
);
with_context!(
builder,
"verify cross-table lookups",
verify_cross_table_lookups_circuit::<F, C, D>(
builder,
cross_table_lookups,
&all_proof.stark_proofs,
ctl_challenges,
inner_config,
)
);
circuit_config,
),
]
}
/// Recursively verifies an inner proof.
@ -156,7 +395,7 @@ fn verify_stark_proof_with_challenges_circuit<
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
stark: S,
stark: &S,
proof: &StarkProofTarget<D>,
challenges: &StarkProofChallengesTarget<D>,
ctl_vars: &[CtlCheckVarsTarget<F, D>],
@ -212,7 +451,7 @@ fn verify_stark_proof_with_challenges_circuit<
"evaluate vanishing polynomial",
eval_vanishing_poly_circuit::<F, C, S, D>(
builder,
&stark,
stark,
inner_config,
vars,
permutation_data,
@ -286,35 +525,35 @@ pub fn add_virtual_all_proof<F: RichField + Extendable<D>, const D: usize>(
let stark_proofs = [
add_virtual_stark_proof(
builder,
all_stark.cpu_stark,
&all_stark.cpu_stark,
config,
degree_bits[Table::Cpu as usize],
nums_ctl_zs[Table::Cpu as usize],
),
add_virtual_stark_proof(
builder,
all_stark.keccak_stark,
&all_stark.keccak_stark,
config,
degree_bits[Table::Keccak as usize],
nums_ctl_zs[Table::Keccak as usize],
),
add_virtual_stark_proof(
builder,
all_stark.keccak_memory_stark,
&all_stark.keccak_memory_stark,
config,
degree_bits[Table::KeccakMemory as usize],
nums_ctl_zs[Table::KeccakMemory as usize],
),
add_virtual_stark_proof(
builder,
all_stark.logic_stark,
&all_stark.logic_stark,
config,
degree_bits[Table::Logic as usize],
nums_ctl_zs[Table::Logic as usize],
),
add_virtual_stark_proof(
builder,
all_stark.memory_stark,
&all_stark.memory_stark,
config,
degree_bits[Table::Memory as usize],
nums_ctl_zs[Table::Memory as usize],
@ -328,6 +567,33 @@ pub fn add_virtual_all_proof<F: RichField + Extendable<D>, const D: usize>(
}
}
/// Returns `RecursiveAllProofTargetWithData` where the proofs targets are virtual and the
/// verifier data targets are constants.
pub fn add_virtual_recursive_all_proof<F: RichField + Extendable<D>, H, C, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
verifier_data: &[VerifierCircuitData<F, C, D>; NUM_TABLES],
) -> RecursiveAllProofTargetWithData<D>
where
H: Hasher<F, Hash = HashOut<F>>,
C: GenericConfig<D, F = F, Hasher = H>,
{
let recursive_proofs = std::array::from_fn(|i| {
let verifier_data = &verifier_data[i];
builder.add_virtual_proof_with_pis(&verifier_data.common)
});
let verifier_data = std::array::from_fn(|i| {
let verifier_data = &verifier_data[i];
VerifierCircuitTarget {
constants_sigmas_cap: builder
.constant_merkle_cap(&verifier_data.verifier_only.constants_sigmas_cap),
}
});
RecursiveAllProofTargetWithData {
recursive_proofs,
verifier_data,
}
}
pub fn add_virtual_public_values<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
) -> PublicValuesTarget {
@ -377,7 +643,7 @@ pub fn add_virtual_block_metadata<F: RichField + Extendable<D>, const D: usize>(
pub fn add_virtual_stark_proof<F: RichField + Extendable<D>, S: Stark<F, D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
stark: S,
stark: &S,
config: &StarkConfig,
degree_bits: usize,
num_ctl_zs: usize,
@ -397,14 +663,14 @@ pub fn add_virtual_stark_proof<F: RichField + Extendable<D>, S: Stark<F, D>, con
trace_cap: builder.add_virtual_cap(cap_height),
permutation_ctl_zs_cap: permutation_zs_cap,
quotient_polys_cap: builder.add_virtual_cap(cap_height),
openings: add_stark_opening_set::<F, S, D>(builder, stark, num_ctl_zs, config),
openings: add_virtual_stark_opening_set::<F, S, D>(builder, stark, num_ctl_zs, config),
opening_proof: builder.add_virtual_fri_proof(&num_leaves_per_oracle, &fri_params),
}
}
fn add_stark_opening_set<F: RichField + Extendable<D>, S: Stark<F, D>, const D: usize>(
fn add_virtual_stark_opening_set<F: RichField + Extendable<D>, S: Stark<F, D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
stark: S,
stark: &S,
num_ctl_zs: usize,
config: &StarkConfig,
) -> StarkOpeningSetTarget<D> {
@ -422,6 +688,22 @@ fn add_stark_opening_set<F: RichField + Extendable<D>, S: Stark<F, D>, const D:
}
}
pub fn set_recursive_all_proof_target<F, C: GenericConfig<D, F = F>, W, const D: usize>(
witness: &mut W,
recursive_all_proof_target: &RecursiveAllProofTargetWithData<D>,
all_proof: &RecursiveAllProof<F, C, D>,
) where
F: RichField + Extendable<D>,
C::Hasher: AlgebraicHasher<F>,
W: Witness<F>,
{
for i in 0..NUM_TABLES {
witness.set_proof_with_pis_target(
&recursive_all_proof_target.recursive_proofs[i],
&all_proof.recursive_proofs[i],
);
}
}
pub fn set_all_proof_target<F, C: GenericConfig<D, F = F>, W, const D: usize>(
witness: &mut W,
all_proof_target: &AllProofTarget<D>,
@ -556,3 +838,219 @@ pub fn set_block_metadata_target<F, W, const D: usize>(
F::from_canonical_u64(block_metadata.block_base_fee.as_u64()),
);
}
#[cfg(test)]
pub(crate) mod tests {
use anyhow::Result;
use plonky2::field::extension::Extendable;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::hashing::SPONGE_WIDTH;
use plonky2::iop::challenger::RecursiveChallenger;
use plonky2::iop::witness::{PartialWitness, Witness};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, VerifierCircuitData};
use plonky2::plonk::config::Hasher;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::ProofWithPublicInputs;
use crate::all_stark::{AllStark, Table};
use crate::config::StarkConfig;
use crate::cpu::cpu_stark::CpuStark;
use crate::cross_table_lookup::{CrossTableLookup, CtlCheckVarsTarget};
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_memory::keccak_memory_stark::KeccakMemoryStark;
use crate::logic::LogicStark;
use crate::memory::memory_stark::MemoryStark;
use crate::permutation::{GrandProductChallenge, GrandProductChallengeSet};
use crate::proof::{AllChallengerState, AllProof, StarkProof};
use crate::recursive_verifier::{
add_virtual_stark_proof, set_stark_proof_target,
verify_stark_proof_with_challenges_circuit, RecursiveAllProof,
};
use crate::stark::Stark;
/// Recursively verify a Stark proof.
/// Outputs the recursive proof and the associated verifier data.
fn recursively_verify_stark_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
const D: usize,
>(
table: Table,
stark: S,
proof: &StarkProof<F, C, D>,
cross_table_lookups: &[CrossTableLookup<F>],
ctl_challenges: &GrandProductChallengeSet<F>,
challenger_state_before_vals: [F; SPONGE_WIDTH],
inner_config: &StarkConfig,
circuit_config: &CircuitConfig,
) -> Result<(ProofWithPublicInputs<F, C, D>, VerifierCircuitData<F, C, D>)>
where
[(); S::COLUMNS]:,
[(); C::Hasher::HASH_SIZE]:,
C::Hasher: AlgebraicHasher<F>,
{
let mut builder = CircuitBuilder::<F, D>::new(circuit_config.clone());
let mut pw = PartialWitness::new();
let num_permutation_zs = stark.num_permutation_batches(inner_config);
let num_permutation_batch_size = stark.permutation_batch_size();
let proof_target = add_virtual_stark_proof(
&mut builder,
&stark,
inner_config,
proof.recover_degree_bits(inner_config),
proof.num_ctl_zs(),
);
set_stark_proof_target(&mut pw, &proof_target, proof, builder.zero());
builder.register_public_inputs(
&proof_target
.trace_cap
.0
.iter()
.flat_map(|h| h.elements)
.collect::<Vec<_>>(),
);
let ctl_challenges_target = GrandProductChallengeSet {
challenges: (0..inner_config.num_challenges)
.map(|_| GrandProductChallenge {
beta: builder.add_virtual_public_input(),
gamma: builder.add_virtual_public_input(),
})
.collect(),
};
for i in 0..inner_config.num_challenges {
pw.set_target(
ctl_challenges_target.challenges[i].beta,
ctl_challenges.challenges[i].beta,
);
pw.set_target(
ctl_challenges_target.challenges[i].gamma,
ctl_challenges.challenges[i].gamma,
);
}
let ctl_vars = CtlCheckVarsTarget::from_proof(
table,
&proof_target,
cross_table_lookups,
&ctl_challenges_target,
num_permutation_zs,
);
let challenger_state_before = std::array::from_fn(|_| builder.add_virtual_public_input());
pw.set_target_arr(challenger_state_before, challenger_state_before_vals);
let mut challenger =
RecursiveChallenger::<F, C::Hasher, D>::from_state(challenger_state_before);
let challenges = proof_target.get_challenges::<F, C>(
&mut builder,
&mut challenger,
num_permutation_zs > 0,
num_permutation_batch_size,
inner_config,
);
let challenger_state_after = challenger.compact(&mut builder);
builder.register_public_inputs(&challenger_state_after);
builder.register_public_inputs(&proof_target.openings.ctl_zs_last);
verify_stark_proof_with_challenges_circuit::<F, C, _, D>(
&mut builder,
&stark,
&proof_target,
&challenges,
&ctl_vars,
inner_config,
);
let data = builder.build::<C>();
Ok((data.prove(pw)?, data.verifier_data()))
}
/// Recursively verify every Stark proof in an `AllProof`.
pub fn recursively_verify_all_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>(
all_stark: &AllStark<F, D>,
all_proof: &AllProof<F, C, D>,
inner_config: &StarkConfig,
circuit_config: &CircuitConfig,
) -> Result<RecursiveAllProof<F, C, D>>
where
[(); CpuStark::<F, D>::COLUMNS]:,
[(); KeccakStark::<F, D>::COLUMNS]:,
[(); KeccakMemoryStark::<F, D>::COLUMNS]:,
[(); LogicStark::<F, D>::COLUMNS]:,
[(); MemoryStark::<F, D>::COLUMNS]:,
[(); C::Hasher::HASH_SIZE]:,
C::Hasher: AlgebraicHasher<F>,
{
let AllChallengerState {
states,
ctl_challenges,
} = all_proof.get_challenger_states(all_stark, inner_config);
Ok(RecursiveAllProof {
recursive_proofs: [
recursively_verify_stark_proof(
Table::Cpu,
all_stark.cpu_stark,
&all_proof.stark_proofs[Table::Cpu as usize],
&all_stark.cross_table_lookups,
&ctl_challenges,
states[0],
inner_config,
circuit_config,
)?
.0,
recursively_verify_stark_proof(
Table::Keccak,
all_stark.keccak_stark,
&all_proof.stark_proofs[Table::Keccak as usize],
&all_stark.cross_table_lookups,
&ctl_challenges,
states[1],
inner_config,
circuit_config,
)?
.0,
recursively_verify_stark_proof(
Table::KeccakMemory,
all_stark.keccak_memory_stark,
&all_proof.stark_proofs[Table::KeccakMemory as usize],
&all_stark.cross_table_lookups,
&ctl_challenges,
states[2],
inner_config,
circuit_config,
)?
.0,
recursively_verify_stark_proof(
Table::Logic,
all_stark.logic_stark,
&all_proof.stark_proofs[Table::Logic as usize],
&all_stark.cross_table_lookups,
&ctl_challenges,
states[3],
inner_config,
circuit_config,
)?
.0,
recursively_verify_stark_proof(
Table::Memory,
all_stark.memory_stark,
&all_proof.stark_proofs[Table::Memory as usize],
&all_stark.cross_table_lookups,
&ctl_challenges,
states[4],
inner_config,
circuit_config,
)?
.0,
],
})
}
}

View File

@ -95,9 +95,12 @@ where
config,
)?;
verify_cross_table_lookups(
let degrees_bits =
std::array::from_fn(|i| all_proof.stark_proofs[i].recover_degree_bits(config));
verify_cross_table_lookups::<F, C, D>(
cross_table_lookups,
&all_proof.stark_proofs,
all_proof.stark_proofs.map(|p| p.openings.ctl_zs_last),
degrees_bits,
ctl_challenges,
config,
)

View File

@ -46,6 +46,10 @@ impl FriConfig {
reduction_arity_bits,
}
}
pub fn num_cap_elements(&self) -> usize {
1 << self.cap_height
}
}
/// FRI parameters, including generated parameters which are specific to an instance size, in

View File

@ -146,6 +146,14 @@ impl<F: RichField, H: Hasher<F>> Challenger<F, H> {
self.output_buffer
.extend_from_slice(&self.sponge_state[0..SPONGE_RATE]);
}
pub fn compact(&mut self) -> [F; SPONGE_WIDTH] {
if !self.input_buffer.is_empty() {
self.duplexing();
}
self.output_buffer.clear();
self.sponge_state
}
}
impl<F: RichField, H: AlgebraicHasher<F>> Default for Challenger<F, H> {
@ -176,6 +184,14 @@ impl<F: RichField + Extendable<D>, H: AlgebraicHasher<F>, const D: usize>
}
}
pub fn from_state(sponge_state: [Target; SPONGE_WIDTH]) -> Self {
RecursiveChallenger {
sponge_state,
input_buffer: vec![],
output_buffer: vec![],
}
}
pub(crate) fn observe_element(&mut self, target: Target) {
// Any buffered outputs are now invalid, since they wouldn't reflect this input.
self.output_buffer.clear();
@ -183,7 +199,7 @@ impl<F: RichField + Extendable<D>, H: AlgebraicHasher<F>, const D: usize>
self.input_buffer.push(target);
}
pub(crate) fn observe_elements(&mut self, targets: &[Target]) {
pub fn observe_elements(&mut self, targets: &[Target]) {
for &target in targets {
self.observe_element(target);
}
@ -272,6 +288,12 @@ impl<F: RichField + Extendable<D>, H: AlgebraicHasher<F>, const D: usize>
self.input_buffer.clear();
}
pub fn compact(&mut self, builder: &mut CircuitBuilder<F, D>) -> [Target; SPONGE_WIDTH] {
self.absorb_buffered_inputs(builder);
self.output_buffer.clear();
self.sponge_state
}
}
#[cfg(test)]

View File

@ -23,8 +23,9 @@ use crate::gates::gate::{CurrentSlot, Gate, GateInstance, GateRef};
use crate::gates::noop::NoopGate;
use crate::gates::public_input::PublicInputGate;
use crate::gates::selectors::selector_polynomials;
use crate::hash::hash_types::{HashOutTarget, MerkleCapTarget, RichField};
use crate::hash::hash_types::{HashOut, HashOutTarget, MerkleCapTarget, RichField};
use crate::hash::merkle_proofs::MerkleProofTarget;
use crate::hash::merkle_tree::MerkleCap;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{
ConstantGenerator, CopyGenerator, RandomValueGenerator, SimpleGenerator, WitnessGenerator,
@ -208,6 +209,13 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
b
}
/// Add a virtual target and register it as a public input.
pub fn add_virtual_public_input(&mut self) -> Target {
let t = self.add_virtual_target();
self.register_public_input(t);
t
}
/// Adds a gate to the circuit, and returns its index.
pub fn add_gate<G: Gate<F, D>>(&mut self, gate_type: G, mut constants: Vec<F>) -> usize {
self.check_gate_compatibility(&gate_type);
@ -361,6 +369,19 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn constant_hash(&mut self, h: HashOut<F>) -> HashOutTarget {
HashOutTarget {
elements: h.elements.map(|x| self.constant(x)),
}
}
pub fn constant_merkle_cap<H: Hasher<F, Hash = HashOut<F>>>(
&mut self,
cap: &MerkleCap<F, H>,
) -> MerkleCapTarget {
MerkleCapTarget(cap.0.iter().map(|h| self.constant_hash(*h)).collect())
}
/// If the given target is a constant (i.e. it was created by the `constant(F)` method), returns
/// its constant value. Otherwise, returns `None`.
pub fn target_as_constant(&self, target: Target) -> Option<F> {
@ -835,15 +856,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
[(); C::Hasher::HASH_SIZE]:,
{
// TODO: Can skip parts of this.
let CircuitData {
prover_only,
common,
..
} = self.build();
ProverCircuitData {
prover_only,
common,
}
let circuit_data = self.build();
circuit_data.prover_data()
}
/// Builds a "verifier circuit", with data needed to verify proofs but not generate them.
@ -852,14 +866,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
[(); C::Hasher::HASH_SIZE]:,
{
// TODO: Can skip parts of this.
let CircuitData {
verifier_only,
common,
..
} = self.build();
VerifierCircuitData {
verifier_only,
common,
}
let circuit_data = self.build();
circuit_data.verifier_data()
}
}

View File

@ -140,6 +140,30 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>
{
compressed_proof_with_pis.verify(&self.verifier_only, &self.common)
}
pub fn verifier_data(self) -> VerifierCircuitData<F, C, D> {
let CircuitData {
verifier_only,
common,
..
} = self;
VerifierCircuitData {
verifier_only,
common,
}
}
pub fn prover_data(self) -> ProverCircuitData<F, C, D> {
let CircuitData {
prover_only,
common,
..
} = self;
ProverCircuitData {
prover_only,
common,
}
}
}
/// Circuit data required by the prover. This may be thought of as a proving key, although it