Add lengths to CommonData

This commit is contained in:
wborgeaud 2021-07-01 15:41:01 +02:00
parent c83382aaaa
commit 59410447bf
6 changed files with 42 additions and 36 deletions

View File

@ -21,6 +21,7 @@ use crate::plonk_common::PlonkPolynomials;
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::PolynomialValues;
use crate::target::Target;
use crate::util::partial_products::num_partial_products;
use crate::util::{log2_ceil, log2_strict, transpose, transpose_poly_values};
use crate::wire::Wire;
@ -434,6 +435,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.max()
.expect("No gates?");
let num_partial_products =
num_partial_products(self.config.num_routed_wires, max_filtered_constraint_degree);
// TODO: This should also include an encoding of gate constraints.
let circuit_digest_parts = [
constants_sigmas_root.elements.to_vec(),
@ -449,6 +453,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
num_gate_constraints,
num_constants,
k_is,
num_partial_products,
circuit_digest,
};

View File

@ -157,6 +157,10 @@ pub struct CommonCircuitData<F: Extendable<D>, const D: usize> {
/// The `{k_i}` valued used in `S_ID_i` in Plonk's permutation argument.
pub(crate) k_is: Vec<F>,
/// The number of partial products needed to compute the `Z` polynomials, as well as the number
/// of partial products needed to compute the last product.
pub(crate) num_partial_products: (usize, usize),
/// A digest of the "circuit" (i.e. the instance, minus public inputs), which can be used to
/// seed Fiat-Shamir.
pub(crate) circuit_digest: Hash<F>,

View File

@ -155,26 +155,8 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
wire_value + betas[i] * s_sigma + gammas[i]
})
.collect::<Vec<_>>();
let numerator_partial_products = partial_products(&numerator_values, max_degree);
let denominator_partial_products = partial_products(&denominator_values, max_degree);
let num_prods = numerator_partial_products.0.len();
// dbg!(numerator_partial_products
// .0
// .iter()
// .chain(&denominator_partial_products.0)
// .zip(&local_partial_products[i * num_prods..(i + 1) * num_prods])
// .map(|(&a, &b)| a - b)
// .collect::<Vec<_>>(),);
// vanishing_partial_products_terms.append(
// &mut numerator_partial_products
// .0
// .into_iter()
// .chain(denominator_partial_products.0)
// .zip(&local_partial_products[i * num_prods..(i + 1) * num_prods])
// .map(|(a, &b)| a - b)
// .collect::<Vec<_>>(),
// );
let (num_prods, final_num_prod) = common_data.num_partial_products;
vanishing_partial_products_terms.extend(check_partial_products(
&numerator_values,
&local_partial_products[2 * i * num_prods..(2 * i + 1) * num_prods],
@ -185,16 +167,14 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
&local_partial_products[(2 * i + 1) * num_prods..(2 * i + 2) * num_prods],
max_degree,
));
// dbg!(common_data.max_filtered_constraint_degree);
// dbg!(numerator_partial_products.1.len());
// dbg!(denominator_partial_products.1.len());
let f_prime: F = local_partial_products
[(2 * i + 1) * num_prods - numerator_partial_products.1..(2 * i + 1) * num_prods]
[(2 * i + 1) * num_prods - final_num_prod..(2 * i + 1) * num_prods]
.iter()
.copied()
.product();
let g_prime: F = local_partial_products
[(2 * i + 2) * num_prods - numerator_partial_products.1..(2 * i + 2) * num_prods]
[(2 * i + 2) * num_prods - final_num_prod..(2 * i + 2) * num_prods]
.iter()
.copied()
.product();

View File

@ -331,6 +331,7 @@ mod tests {
num_gate_constraints: 0,
num_constants: 4,
k_is: vec![F::ONE; 6],
num_partial_products: (0, 0),
circuit_digest: Hash::from_partial(vec![]),
};

View File

@ -232,13 +232,13 @@ fn wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
.collect::<Vec<_>>();
let numerator_partials = partial_products(&numerator_values, degree);
let denominator_partials = partial_products(&denominator_values, degree);
let numerator = numerator_partials.0
[numerator_partials.0.len() - numerator_partials.1..]
let numerator = numerator_partials
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
.iter()
.copied()
.product();
let denominator = denominator_partials.0
[denominator_partials.0.len() - denominator_partials.1..]
let denominator = denominator_partials
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
.iter()
.copied()
.product();
@ -246,8 +246,8 @@ fn wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
[
vec![numerator],
vec![denominator],
numerator_partials.0,
denominator_partials.0,
numerator_partials,
denominator_partials,
]
.concat()
})

View File

@ -1,7 +1,9 @@
use std::iter::Product;
use std::ops::Sub;
pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> (Vec<T>, usize) {
use crate::util::ceil_div_usize;
pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> Vec<T> {
let mut res = Vec::new();
let mut remainder = v.to_vec();
while remainder.len() >= max_degree {
@ -14,7 +16,19 @@ pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> (Vec<T
remainder = new_partials;
}
(res, remainder.len())
res
}
pub fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
let mut res = 0;
let mut remainder = n;
while remainder >= max_degree {
let new_partials_len = ceil_div_usize(remainder, max_degree);
res += new_partials_len;
remainder = new_partials_len;
}
(res, remainder)
}
pub fn check_partial_products<T: Product + Copy + Sub<Output = T>>(
@ -47,15 +61,17 @@ mod tests {
fn test_partial_products() {
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 2);
assert_eq!(p, (vec![2, 12, 30, 24, 30, 720], 1));
assert!(check_partial_products(&v, &p.0, 2)
assert_eq!(p, vec![2, 12, 30, 24, 30, 720]);
assert_eq!(p.len(), num_partial_products(v.len(), 2).0);
assert!(check_partial_products(&v, &p, 2)
.iter()
.all(|x| x.is_zero()));
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 3);
assert_eq!(p, (vec![6, 120], 2));
assert!(check_partial_products(&v, &p.0, 3)
assert_eq!(p, vec![6, 120]);
assert_eq!(p.len(), num_partial_products(v.len(), 3).0);
assert!(check_partial_products(&v, &p, 3)
.iter()
.all(|x| x.is_zero()));
}