Working partial products

This commit is contained in:
wborgeaud 2021-07-01 15:20:16 +02:00
parent f7c4a463fc
commit c83382aaaa
5 changed files with 143 additions and 78 deletions

View File

@ -202,7 +202,7 @@ impl<F: Extendable<D>, const D: usize> CommonCircuitData<F, D> {
self.num_constants..self.num_constants + self.config.num_routed_wires
}
/// Range of the constants polynomials in the `constants_sigmas_commitment`.
/// Range of the `z`s polynomials in the ``.
pub fn zs_range(&self) -> Range<usize> {
0..self.config.num_challenges
}

View File

@ -446,7 +446,9 @@ mod tests {
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut config = CircuitConfig::large_config();
config.rate_bits = 2;
config.fri_config.rate_bits = 2;
let mut builder = CircuitBuilder::<F, D>::new(config);

View File

@ -9,7 +9,7 @@ use crate::gates::gate::{GateRef, PrefixedGate};
use crate::polynomial::commitment::SALT_SIZE;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::target::Target;
use crate::util::partial_products::partial_products;
use crate::util::partial_products::{check_partial_products, partial_products};
use crate::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// Holds the Merkle tree index and blinding flag of a set of polynomials used in FRI.
@ -124,6 +124,7 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
alphas: &[F],
z_h_on_coset: &ZeroPolyOnCoset<F>,
) -> Vec<F> {
let max_degree = common_data.max_filtered_constraint_degree;
let constraint_terms =
evaluate_gate_constraints_base(&common_data.gates, common_data.num_gate_constraints, vars);
@ -154,36 +155,50 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
wire_value + betas[i] * s_sigma + gammas[i]
})
.collect::<Vec<_>>();
let numerator_partial_products =
partial_products(numerator_values, common_data.max_filtered_constraint_degree);
let denominator_partial_products = partial_products(
denominator_values,
common_data.max_filtered_constraint_degree,
);
let numerator_partial_products = partial_products(&numerator_values, max_degree);
let denominator_partial_products = partial_products(&denominator_values, max_degree);
dbg!(numerator_partial_products
.clone()
.0
.into_iter()
.chain(denominator_partial_products.clone().0)
.zip(local_partial_products)
.map(|(a, &b)| a - b)
.collect::<Vec<_>>(),);
vanishing_partial_products_terms.append(
&mut numerator_partial_products
.0
.into_iter()
.chain(denominator_partial_products.0)
.zip(local_partial_products)
.map(|(a, &b)| a - b)
.collect::<Vec<_>>(),
);
dbg!(&numerator_partial_products.1);
dbg!(&denominator_partial_products.1);
dbg!(common_data.max_filtered_constraint_degree);
let f_prime: F = numerator_partial_products.1.into_iter().product();
let g_prime: F = denominator_partial_products.1.into_iter().product();
// vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
let num_prods = numerator_partial_products.0.len();
// dbg!(numerator_partial_products
// .0
// .iter()
// .chain(&denominator_partial_products.0)
// .zip(&local_partial_products[i * num_prods..(i + 1) * num_prods])
// .map(|(&a, &b)| a - b)
// .collect::<Vec<_>>(),);
// vanishing_partial_products_terms.append(
// &mut numerator_partial_products
// .0
// .into_iter()
// .chain(denominator_partial_products.0)
// .zip(&local_partial_products[i * num_prods..(i + 1) * num_prods])
// .map(|(a, &b)| a - b)
// .collect::<Vec<_>>(),
// );
vanishing_partial_products_terms.extend(check_partial_products(
&numerator_values,
&local_partial_products[2 * i * num_prods..(2 * i + 1) * num_prods],
max_degree,
));
vanishing_partial_products_terms.extend(check_partial_products(
&denominator_values,
&local_partial_products[(2 * i + 1) * num_prods..(2 * i + 2) * num_prods],
max_degree,
));
// dbg!(common_data.max_filtered_constraint_degree);
// dbg!(numerator_partial_products.1.len());
// dbg!(denominator_partial_products.1.len());
let f_prime: F = local_partial_products
[(2 * i + 1) * num_prods - numerator_partial_products.1..(2 * i + 1) * num_prods]
.iter()
.copied()
.product();
let g_prime: F = local_partial_products
[(2 * i + 2) * num_prods - numerator_partial_products.1..(2 * i + 2) * num_prods]
.iter()
.copied()
.product();
vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
}
let vanishing_terms = [
@ -193,6 +208,9 @@ pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
constraint_terms,
]
.concat();
// if index % 4 == 0 {
// println!("{}", vanishing_terms.iter().all(|x| x.is_zero()));
// }
reduce_with_powers_multi(&vanishing_terms, alphas)
}

View File

@ -80,7 +80,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let partial_products = timed!(
let mut partial_products = timed!(
all_wires_permutation_partial_products(&witness, &betas, &gammas, prover_data, common_data),
"to compute partial products"
);
@ -90,6 +90,10 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
"to compute Z's"
);
partial_products.iter_mut().for_each(|part| {
part.drain(0..2);
});
let zs_partial_products = [plonk_z_vecs, partial_products.concat()].concat();
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(
@ -205,35 +209,50 @@ fn wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
) -> Vec<PolynomialValues<F>> {
let degree = common_data.max_filtered_constraint_degree;
let subgroup = &prover_data.subgroup;
let mut values = Vec::new();
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let s_sigmas = &prover_data.sigmas[i - 1];
let numerator_values = (0..common_data.config.num_routed_wires)
.map(|j| {
let wire_value = witness.get_wire(i - 1, j);
let k_i = k_is[j];
let s_id = k_i * x;
wire_value + beta * s_id + gamma
})
.collect::<Vec<_>>();
let denominator_values = (0..common_data.config.num_routed_wires)
.map(|j| {
let wire_value = witness.get_wire(i - 1, j);
let s_sigma = s_sigmas[j];
wire_value + beta * s_sigma + gamma
})
.collect::<Vec<_>>();
let partials = [
partial_products(numerator_values, degree).0,
partial_products(denominator_values, degree).0,
]
.concat();
values.push(partials);
}
let values = subgroup
.iter()
.enumerate()
.map(|(i, &x)| {
let s_sigmas = &prover_data.sigmas[i];
let numerator_values = (0..common_data.config.num_routed_wires)
.map(|j| {
let wire_value = witness.get_wire(i, j);
let k_i = k_is[j];
let s_id = k_i * x;
wire_value + beta * s_id + gamma
})
.collect::<Vec<_>>();
let denominator_values = (0..common_data.config.num_routed_wires)
.map(|j| {
let wire_value = witness.get_wire(i, j);
let s_sigma = s_sigmas[j];
wire_value + beta * s_sigma + gamma
})
.collect::<Vec<_>>();
let numerator_partials = partial_products(&numerator_values, degree);
let denominator_partials = partial_products(&denominator_values, degree);
let numerator = numerator_partials.0
[numerator_partials.0.len() - numerator_partials.1..]
.iter()
.copied()
.product();
let denominator = denominator_partials.0
[denominator_partials.0.len() - denominator_partials.1..]
.iter()
.copied()
.product();
[
vec![numerator],
vec![denominator],
numerator_partials.0,
denominator_partials.0,
]
.concat()
})
.collect::<Vec<_>>();
values.insert(0, vec![F::ONE; values[0].len()]);
transpose(&values)
.into_par_iter()
.map(PolynomialValues::new)
@ -255,20 +274,12 @@ fn compute_z<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> PolynomialValues<F> {
let num_partials = partial_products.len() / 2;
let subgroup = &prover_data.subgroup;
let mut plonk_z_points = vec![F::ONE];
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let numerator = partial_products[..num_partials]
.iter()
.map(|vs| vs.values[i])
.product();
let denominator = partial_products[num_partials..]
.iter()
.map(|vs| vs.values[i])
.product();
let numerator = partial_products[0].values[i - 1];
let denominator = partial_products[1].values[i - 1];
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * numerator / denominator);
}
@ -312,7 +323,8 @@ fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
ZeroPolyOnCoset::new(common_data.degree_bits, max_filtered_constraint_degree_bits);
let quotient_values: Vec<Vec<F>> = points
.into_par_iter()
// .into_par_iter()
.into_iter()
.enumerate()
.map(|(i, x)| {
let shifted_x = F::coset_shift() * x;
@ -335,6 +347,7 @@ fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
local_constants,
local_wires,
};
dbg!(i);
let mut quotient_values = eval_vanishing_poly_base(
common_data,
i,

View File

@ -1,8 +1,9 @@
use std::iter::Product;
use std::ops::Sub;
pub fn partial_products<T: Product + Copy>(v: Vec<T>, max_degree: usize) -> (Vec<T>, Vec<T>) {
pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> (Vec<T>, usize) {
let mut res = Vec::new();
let mut remainder = v;
let mut remainder = v.to_vec();
while remainder.len() >= max_degree {
let new_partials = remainder
.chunks(max_degree)
@ -13,18 +14,49 @@ pub fn partial_products<T: Product + Copy>(v: Vec<T>, max_degree: usize) -> (Vec
remainder = new_partials;
}
(res, remainder)
(res, remainder.len())
}
pub fn check_partial_products<T: Product + Copy + Sub<Output = T>>(
v: &[T],
partials: &[T],
max_degree: usize,
) -> Vec<T> {
let mut res = Vec::new();
let mut remainder = v.to_vec();
let mut partials = partials.to_vec();
while remainder.len() >= max_degree {
let products = remainder
.chunks(max_degree)
.map(|chunk| chunk.iter().copied().product())
.collect::<Vec<T>>();
res.extend(products.iter().zip(&partials).map(|(&a, &b)| a - b));
remainder = partials.drain(..products.len()).collect();
}
res
}
#[cfg(test)]
mod tests {
use num::Zero;
use super::*;
#[test]
fn test_partial_products() {
assert_eq!(
partial_products(vec![1, 2, 3, 4, 5, 6], 2),
(vec![2, 12, 30, 24, 30], vec![24, 30])
);
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 2);
assert_eq!(p, (vec![2, 12, 30, 24, 30, 720], 1));
assert!(check_partial_products(&v, &p.0, 2)
.iter()
.all(|x| x.is_zero()));
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 3);
assert_eq!(p, (vec![6, 120], 2));
assert!(check_partial_products(&v, &p.0, 3)
.iter()
.all(|x| x.is_zero()));
}
}