2021-05-11 15:26:20 +02:00
|
|
|
use crate::field::crandall_field::CrandallField;
|
|
|
|
|
use crate::field::field::Field;
|
|
|
|
|
use rand::Rng;
|
|
|
|
|
use std::fmt::{Debug, Display, Formatter};
|
|
|
|
|
use std::hash::{Hash, Hasher};
|
|
|
|
|
use std::iter::{Product, Sum};
|
|
|
|
|
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
|
|
|
|
|
|
|
|
|
pub trait BinaryFieldExtension: Field {
|
|
|
|
|
type BaseField: Field;
|
|
|
|
|
|
|
|
|
|
// Element W of BaseField, such that `X^2 - W` is irreducible over BaseField.
|
|
|
|
|
const W: Self::BaseField;
|
|
|
|
|
|
|
|
|
|
fn to_canonical_representation(&self) -> [Self::BaseField; 2];
|
|
|
|
|
|
2021-05-11 20:58:04 +02:00
|
|
|
fn from_canonical_representation(v: [Self::BaseField; 2]) -> Self;
|
|
|
|
|
|
2021-05-11 15:26:20 +02:00
|
|
|
fn is_in_basefield(&self) -> bool {
|
|
|
|
|
self.to_canonical_representation()[1..]
|
|
|
|
|
.iter()
|
|
|
|
|
.all(|x| x.is_zero())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Frobenius automorphisms: x -> x^p, where p is the order of BaseField.
|
2021-05-11 20:58:04 +02:00
|
|
|
fn frobenius(&self) -> Self {
|
|
|
|
|
let [a0, a1] = self.to_canonical_representation();
|
|
|
|
|
let k = (Self::BaseField::ORDER - 1) / 2;
|
|
|
|
|
let z = Self::W.exp_usize(k as usize);
|
|
|
|
|
|
|
|
|
|
Self::from_canonical_representation([a0, a1 * z])
|
|
|
|
|
}
|
2021-05-11 15:26:20 +02:00
|
|
|
|
|
|
|
|
fn scalar_mul(&self, c: Self::BaseField) -> Self;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Copy, Clone)]
|
|
|
|
|
pub struct BinaryCrandallField([CrandallField; 2]);
|
|
|
|
|
|
|
|
|
|
impl BinaryFieldExtension for BinaryCrandallField {
|
|
|
|
|
type BaseField = CrandallField;
|
|
|
|
|
// Verifiable in Sage with
|
|
|
|
|
// ``R.<x> = GF(p)[]; assert (x^2 -3).is_irreducible()`.
|
|
|
|
|
const W: Self::BaseField = CrandallField(3);
|
|
|
|
|
|
|
|
|
|
fn to_canonical_representation(&self) -> [Self::BaseField; 2] {
|
|
|
|
|
self.0
|
|
|
|
|
}
|
|
|
|
|
|
2021-05-11 20:58:04 +02:00
|
|
|
fn from_canonical_representation(v: [Self::BaseField; 2]) -> Self {
|
|
|
|
|
Self(v)
|
2021-05-11 15:26:20 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn scalar_mul(&self, c: Self::BaseField) -> Self {
|
|
|
|
|
let [a0, a1] = self.to_canonical_representation();
|
|
|
|
|
Self([a0 * c, a1 * c])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl PartialEq for BinaryCrandallField {
|
|
|
|
|
fn eq(&self, other: &Self) -> bool {
|
|
|
|
|
self.to_canonical_representation() == other.to_canonical_representation()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Eq for BinaryCrandallField {}
|
|
|
|
|
|
|
|
|
|
impl Hash for BinaryCrandallField {
|
|
|
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
|
|
|
for l in &self.to_canonical_representation() {
|
|
|
|
|
Hash::hash(l, state);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Field for BinaryCrandallField {
|
|
|
|
|
const ZERO: Self = Self([CrandallField::ZERO; 2]);
|
|
|
|
|
const ONE: Self = Self([CrandallField::ONE, CrandallField::ZERO]);
|
|
|
|
|
const TWO: Self = Self([CrandallField::TWO, CrandallField::ZERO]);
|
|
|
|
|
const NEG_ONE: Self = Self([CrandallField::NEG_ONE, CrandallField::ZERO]);
|
|
|
|
|
|
|
|
|
|
// Does not fit in 64-bits.
|
|
|
|
|
const ORDER: u64 = 0;
|
|
|
|
|
const TWO_ADICITY: usize = 29;
|
|
|
|
|
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([CrandallField(3), CrandallField::ONE]);
|
|
|
|
|
const POWER_OF_TWO_GENERATOR: Self =
|
|
|
|
|
Self([CrandallField::ZERO, CrandallField(7889429148549342301)]);
|
|
|
|
|
|
|
|
|
|
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
|
|
|
|
|
fn try_inverse(&self) -> Option<Self> {
|
|
|
|
|
if self.is_zero() {
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let a_pow_r_minus_1 = self.frobenius();
|
|
|
|
|
let a_pow_r = a_pow_r_minus_1 * *self;
|
|
|
|
|
debug_assert!(a_pow_r.is_in_basefield());
|
|
|
|
|
|
|
|
|
|
Some(a_pow_r_minus_1.scalar_mul(a_pow_r.0[0].inverse()))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn to_canonical_u64(&self) -> u64 {
|
|
|
|
|
self.0[0].to_canonical_u64()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn from_canonical_u64(n: u64) -> Self {
|
|
|
|
|
Self([
|
|
|
|
|
<Self as BinaryFieldExtension>::BaseField::from_canonical_u64(n),
|
|
|
|
|
<Self as BinaryFieldExtension>::BaseField::ZERO,
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
|
|
|
|
|
Self([
|
|
|
|
|
<Self as BinaryFieldExtension>::BaseField::rand_from_rng(rng),
|
|
|
|
|
<Self as BinaryFieldExtension>::BaseField::rand_from_rng(rng),
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Display for BinaryCrandallField {
|
|
|
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
|
|
|
write!(f, "{} + {}*a", self.0[0], self.0[1])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Debug for BinaryCrandallField {
|
|
|
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
|
|
|
Display::fmt(self, f)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Neg for BinaryCrandallField {
|
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn neg(self) -> Self {
|
|
|
|
|
Self([-self.0[0], -self.0[1]])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Add for BinaryCrandallField {
|
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn add(self, rhs: Self) -> Self {
|
|
|
|
|
Self([self.0[0] + rhs.0[0], self.0[1] + rhs.0[1]])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl AddAssign for BinaryCrandallField {
|
|
|
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
|
|
|
*self = *self + rhs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Sum for BinaryCrandallField {
|
|
|
|
|
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
|
|
|
iter.fold(Self::ZERO, |acc, x| acc + x)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Sub for BinaryCrandallField {
|
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn sub(self, rhs: Self) -> Self {
|
|
|
|
|
Self([self.0[0] - rhs.0[0], self.0[1] - rhs.0[1]])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl SubAssign for BinaryCrandallField {
|
|
|
|
|
#[inline]
|
|
|
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
|
|
|
*self = *self - rhs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Mul for BinaryCrandallField {
|
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn mul(self, rhs: Self) -> Self {
|
|
|
|
|
let Self([a0, a1]) = self;
|
|
|
|
|
let Self([b0, b1]) = rhs;
|
|
|
|
|
|
|
|
|
|
let c0 = a0 * b0 + Self::W * a1 * b1;
|
|
|
|
|
let c1 = a0 * b1 + a1 * b0;
|
|
|
|
|
|
|
|
|
|
Self([c0, c1])
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl MulAssign for BinaryCrandallField {
|
|
|
|
|
#[inline]
|
|
|
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
|
|
|
*self = *self * rhs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Product for BinaryCrandallField {
|
|
|
|
|
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
|
|
|
iter.fold(Self::ONE, |acc, x| acc * x)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Div for BinaryCrandallField {
|
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
|
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
|
|
|
self * rhs.inverse()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl DivAssign for BinaryCrandallField {
|
|
|
|
|
fn div_assign(&mut self, rhs: Self) {
|
|
|
|
|
*self = *self / rhs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
mod tests {
|
|
|
|
|
use crate::field::extension_field::binary::{BinaryCrandallField, BinaryFieldExtension};
|
|
|
|
|
use crate::field::field::Field;
|
|
|
|
|
|
|
|
|
|
fn exp_naive<F: Field>(x: F, power: u64) -> F {
|
|
|
|
|
let mut current = x;
|
|
|
|
|
let mut product = F::ONE;
|
|
|
|
|
|
|
|
|
|
for j in 0..64 {
|
|
|
|
|
if (power >> j & 1) != 0 {
|
|
|
|
|
product *= current;
|
|
|
|
|
}
|
|
|
|
|
current = current.square();
|
|
|
|
|
}
|
|
|
|
|
product
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_add_neg_sub_mul() {
|
|
|
|
|
type F = BinaryCrandallField;
|
|
|
|
|
let x = F::rand();
|
|
|
|
|
let y = F::rand();
|
|
|
|
|
let z = F::rand();
|
|
|
|
|
assert_eq!(x + (-x), F::ZERO);
|
|
|
|
|
assert_eq!(-x, F::ZERO - x);
|
|
|
|
|
assert_eq!(
|
|
|
|
|
x + x,
|
|
|
|
|
x.scalar_mul(<F as BinaryFieldExtension>::BaseField::TWO)
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(x * (-x), -x.square());
|
|
|
|
|
assert_eq!(x + y, y + x);
|
|
|
|
|
assert_eq!(x * y, y * x);
|
|
|
|
|
assert_eq!(x * (y * z), (x * y) * z);
|
|
|
|
|
assert_eq!(x - (y + z), (x - y) - z);
|
|
|
|
|
assert_eq!((x + y) - z, x + (y - z));
|
|
|
|
|
assert_eq!(x * (y + z), x * y + x * z);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_inv_div() {
|
|
|
|
|
type F = BinaryCrandallField;
|
|
|
|
|
let x = F::rand();
|
|
|
|
|
let y = F::rand();
|
|
|
|
|
let z = F::rand();
|
|
|
|
|
assert_eq!(x * x.inverse(), F::ONE);
|
|
|
|
|
assert_eq!(x.inverse() * x, F::ONE);
|
|
|
|
|
assert_eq!(x.square().inverse(), x.inverse().square());
|
|
|
|
|
assert_eq!((x / y) * y, x);
|
|
|
|
|
assert_eq!(x / (y * z), (x / y) / z);
|
|
|
|
|
assert_eq!((x * y) / z, x * (y / z));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_frobenius() {
|
|
|
|
|
type F = BinaryCrandallField;
|
|
|
|
|
let x = F::rand();
|
|
|
|
|
assert_eq!(
|
|
|
|
|
exp_naive(x, <F as BinaryFieldExtension>::BaseField::ORDER),
|
|
|
|
|
x.frobenius()
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_field_order() {
|
|
|
|
|
// F::ORDER = 340282366831806780677557380898690695169 = 18446744071293632512 *18446744071293632514 + 1
|
|
|
|
|
type F = BinaryCrandallField;
|
|
|
|
|
let x = F::rand();
|
|
|
|
|
assert_eq!(
|
|
|
|
|
exp_naive(exp_naive(x, 18446744071293632512), 18446744071293632514),
|
|
|
|
|
F::ONE
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|