Added field order test

This commit is contained in:
wborgeaud 2021-05-11 15:26:20 +02:00
parent 04664a54ee
commit f1d812812e
2 changed files with 644 additions and 0 deletions

View File

@ -0,0 +1,293 @@
use crate::field::crandall_field::CrandallField;
use crate::field::field::Field;
use rand::Rng;
use std::fmt::{Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
pub trait BinaryFieldExtension: Field {
type BaseField: Field;
// Element W of BaseField, such that `X^2 - W` is irreducible over BaseField.
const W: Self::BaseField;
fn to_canonical_representation(&self) -> [Self::BaseField; 2];
fn is_in_basefield(&self) -> bool {
self.to_canonical_representation()[1..]
.iter()
.all(|x| x.is_zero())
}
/// Frobenius automorphisms: x -> x^p, where p is the order of BaseField.
fn frobenius(&self) -> Self;
fn scalar_mul(&self, c: Self::BaseField) -> Self;
}
#[derive(Copy, Clone)]
pub struct BinaryCrandallField([CrandallField; 2]);
impl BinaryFieldExtension for BinaryCrandallField {
type BaseField = CrandallField;
// Verifiable in Sage with
// ``R.<x> = GF(p)[]; assert (x^2 -3).is_irreducible()`.
const W: Self::BaseField = CrandallField(3);
fn to_canonical_representation(&self) -> [Self::BaseField; 2] {
self.0
}
fn frobenius(&self) -> Self {
let [a0, a1] = self.to_canonical_representation();
let k = (Self::BaseField::ORDER - 1) / 2;
let z = Self::W.exp_usize(k as usize);
Self([a0, a1 * z])
}
fn scalar_mul(&self, c: Self::BaseField) -> Self {
let [a0, a1] = self.to_canonical_representation();
Self([a0 * c, a1 * c])
}
}
impl PartialEq for BinaryCrandallField {
fn eq(&self, other: &Self) -> bool {
self.to_canonical_representation() == other.to_canonical_representation()
}
}
impl Eq for BinaryCrandallField {}
impl Hash for BinaryCrandallField {
fn hash<H: Hasher>(&self, state: &mut H) {
for l in &self.to_canonical_representation() {
Hash::hash(l, state);
}
}
}
impl Field for BinaryCrandallField {
const ZERO: Self = Self([CrandallField::ZERO; 2]);
const ONE: Self = Self([CrandallField::ONE, CrandallField::ZERO]);
const TWO: Self = Self([CrandallField::TWO, CrandallField::ZERO]);
const NEG_ONE: Self = Self([CrandallField::NEG_ONE, CrandallField::ZERO]);
// Does not fit in 64-bits.
const ORDER: u64 = 0;
const TWO_ADICITY: usize = 29;
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([CrandallField(3), CrandallField::ONE]);
const POWER_OF_TWO_GENERATOR: Self =
Self([CrandallField::ZERO, CrandallField(7889429148549342301)]);
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
let a_pow_r_minus_1 = self.frobenius();
let a_pow_r = a_pow_r_minus_1 * *self;
debug_assert!(a_pow_r.is_in_basefield());
Some(a_pow_r_minus_1.scalar_mul(a_pow_r.0[0].inverse()))
}
fn to_canonical_u64(&self) -> u64 {
self.0[0].to_canonical_u64()
}
fn from_canonical_u64(n: u64) -> Self {
Self([
<Self as BinaryFieldExtension>::BaseField::from_canonical_u64(n),
<Self as BinaryFieldExtension>::BaseField::ZERO,
])
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self([
<Self as BinaryFieldExtension>::BaseField::rand_from_rng(rng),
<Self as BinaryFieldExtension>::BaseField::rand_from_rng(rng),
])
}
}
impl Display for BinaryCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{} + {}*a", self.0[0], self.0[1])
}
}
impl Debug for BinaryCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
impl Neg for BinaryCrandallField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self([-self.0[0], -self.0[1]])
}
}
impl Add for BinaryCrandallField {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([self.0[0] + rhs.0[0], self.0[1] + rhs.0[1]])
}
}
impl AddAssign for BinaryCrandallField {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for BinaryCrandallField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for BinaryCrandallField {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self([self.0[0] - rhs.0[0], self.0[1] - rhs.0[1]])
}
}
impl SubAssign for BinaryCrandallField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for BinaryCrandallField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
let Self([a0, a1]) = self;
let Self([b0, b1]) = rhs;
let c0 = a0 * b0 + Self::W * a1 * b1;
let c1 = a0 * b1 + a1 * b0;
Self([c0, c1])
}
}
impl MulAssign for BinaryCrandallField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for BinaryCrandallField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for BinaryCrandallField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for BinaryCrandallField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::binary::{BinaryCrandallField, BinaryFieldExtension};
use crate::field::field::Field;
use crate::test_arithmetic;
fn exp_naive<F: Field>(x: F, power: u64) -> F {
let mut current = x;
let mut product = F::ONE;
for j in 0..64 {
if (power >> j & 1) != 0 {
product *= current;
}
current = current.square();
}
product
}
#[test]
fn test_add_neg_sub_mul() {
type F = BinaryCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x + (-x), F::ZERO);
assert_eq!(-x, F::ZERO - x);
assert_eq!(
x + x,
x.scalar_mul(<F as BinaryFieldExtension>::BaseField::TWO)
);
assert_eq!(x * (-x), -x.square());
assert_eq!(x + y, y + x);
assert_eq!(x * y, y * x);
assert_eq!(x * (y * z), (x * y) * z);
assert_eq!(x - (y + z), (x - y) - z);
assert_eq!((x + y) - z, x + (y - z));
assert_eq!(x * (y + z), x * y + x * z);
}
#[test]
fn test_inv_div() {
type F = BinaryCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x * x.inverse(), F::ONE);
assert_eq!(x.inverse() * x, F::ONE);
assert_eq!(x.square().inverse(), x.inverse().square());
assert_eq!((x / y) * y, x);
assert_eq!(x / (y * z), (x / y) / z);
assert_eq!((x * y) / z, x * (y / z));
}
#[test]
fn test_frobenius() {
type F = BinaryCrandallField;
let x = F::rand();
assert_eq!(
exp_naive(x, <F as BinaryFieldExtension>::BaseField::ORDER),
x.frobenius()
);
}
#[test]
fn test_field_order() {
// F::ORDER = 340282366831806780677557380898690695169 = 18446744071293632512 *18446744071293632514 + 1
type F = BinaryCrandallField;
let x = F::rand();
assert_eq!(
exp_naive(exp_naive(x, 18446744071293632512), 18446744071293632514),
F::ONE
);
}
}

View File

@ -0,0 +1,351 @@
use crate::field::crandall_field::CrandallField;
use crate::field::field::Field;
use rand::Rng;
use std::fmt::{Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
pub trait QuarticFieldExtension: Field {
type BaseField: Field;
// Element W of BaseField, such that `X^4 - W` is irreducible over BaseField.
const W: Self::BaseField;
fn to_canonical_representation(&self) -> [Self::BaseField; 4];
fn is_in_basefield(&self) -> bool {
self.to_canonical_representation()[1..]
.iter()
.all(|x| x.is_zero())
}
/// Frobenius automorphisms: x -> x^p, where p is the order of BaseField.
fn frobenius(&self) -> Self;
fn scalar_mul(&self, c: Self::BaseField) -> Self;
}
#[derive(Copy, Clone)]
pub struct QuarticCrandallField([CrandallField; 4]);
impl QuarticFieldExtension for QuarticCrandallField {
type BaseField = CrandallField;
// Verifiable in Sage with
// ``R.<x> = GF(p)[]; assert (x^4 -3).is_irreducible()`.
const W: Self::BaseField = CrandallField(3);
fn to_canonical_representation(&self) -> [Self::BaseField; 4] {
self.0
}
fn frobenius(&self) -> Self {
let [a0, a1, a2, a3] = self.to_canonical_representation();
let k = (Self::BaseField::ORDER - 1) / 4;
let z0 = Self::W.exp_usize(k as usize);
let mut z = Self::BaseField::ONE;
let b0 = a0 * z;
z *= z0;
let b1 = a1 * z;
z *= z0;
let b2 = a2 * z;
z *= z0;
let b3 = a3 * z;
Self([b0, b1, b2, b3])
}
fn scalar_mul(&self, c: Self::BaseField) -> Self {
let [a0, a1, a2, a3] = self.to_canonical_representation();
Self([a0 * c, a1 * c, a2 * c, a3 * c])
}
}
impl PartialEq for QuarticCrandallField {
fn eq(&self, other: &Self) -> bool {
self.to_canonical_representation() == other.to_canonical_representation()
}
}
impl Eq for QuarticCrandallField {}
impl Hash for QuarticCrandallField {
fn hash<H: Hasher>(&self, state: &mut H) {
for l in &self.to_canonical_representation() {
Hash::hash(l, state);
}
}
}
impl Field for QuarticCrandallField {
const ZERO: Self = Self([CrandallField::ZERO; 4]);
const ONE: Self = Self([
CrandallField::ONE,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
const TWO: Self = Self([
CrandallField::TWO,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
const NEG_ONE: Self = Self([
CrandallField::NEG_ONE,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
// Does not fit in 64-bits.
const ORDER: u64 = 0;
const TWO_ADICITY: usize = 30;
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([
CrandallField(3),
CrandallField::ONE,
CrandallField::ZERO,
CrandallField::ZERO,
]);
const POWER_OF_TWO_GENERATOR: Self = Self([
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField(14096607364803438105),
]);
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
let a_pow_p = self.frobenius();
let a_pow_p_plus_1 = a_pow_p * *self;
let a_pow_p3_plus_p2 = a_pow_p_plus_1.frobenius().frobenius();
let a_pow_r_minus_1 = a_pow_p3_plus_p2 * a_pow_p;
let a_pow_r = a_pow_r_minus_1 * *self;
debug_assert!(a_pow_r.is_in_basefield());
Some(a_pow_r_minus_1.scalar_mul(a_pow_r.0[0].inverse()))
}
fn to_canonical_u64(&self) -> u64 {
self.0[0].to_canonical_u64()
}
fn from_canonical_u64(n: u64) -> Self {
Self([
<Self as QuarticFieldExtension>::BaseField::from_canonical_u64(n),
<Self as QuarticFieldExtension>::BaseField::ZERO,
<Self as QuarticFieldExtension>::BaseField::ZERO,
<Self as QuarticFieldExtension>::BaseField::ZERO,
])
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self([
<Self as QuarticFieldExtension>::BaseField::rand_from_rng(rng),
<Self as QuarticFieldExtension>::BaseField::rand_from_rng(rng),
<Self as QuarticFieldExtension>::BaseField::rand_from_rng(rng),
<Self as QuarticFieldExtension>::BaseField::rand_from_rng(rng),
])
}
}
impl Display for QuarticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{} + {}*a + {}*a^2 + {}*a^3",
self.0[0], self.0[1], self.0[2], self.0[3]
)
}
}
impl Debug for QuarticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
impl Neg for QuarticCrandallField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self([-self.0[0], -self.0[1], -self.0[2], -self.0[3]])
}
}
impl Add for QuarticCrandallField {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
self.0[3] + rhs.0[3],
])
}
}
impl AddAssign for QuarticCrandallField {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for QuarticCrandallField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for QuarticCrandallField {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self([
self.0[0] - rhs.0[0],
self.0[1] - rhs.0[1],
self.0[2] - rhs.0[2],
self.0[3] - rhs.0[3],
])
}
}
impl SubAssign for QuarticCrandallField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for QuarticCrandallField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
let Self([a0, a1, a2, a3]) = self;
let Self([b0, b1, b2, b3]) = rhs;
let c0 = a0 * b0 + Self::W * (a1 * b3 + a2 * b2 + a3 * b1);
let c1 = a0 * b1 + a1 * b0 + Self::W * (a2 * b3 + a3 * b2);
let c2 = a0 * b2 + a1 * b1 + a2 * b0 + Self::W * a3 * b3;
let c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
Self([c0, c1, c2, c3])
}
}
impl MulAssign for QuarticCrandallField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for QuarticCrandallField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for QuarticCrandallField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for QuarticCrandallField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::{QuarticCrandallField, QuarticFieldExtension};
use crate::field::field::Field;
use crate::test_arithmetic;
fn exp_naive<F: Field>(x: F, power: u128) -> F {
let mut current = x;
let mut product = F::ONE;
for j in 0..128 {
if (power >> j & 1) != 0 {
product *= current;
}
current = current.square();
}
product
}
#[test]
fn test_add_neg_sub_mul() {
type F = QuarticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x + (-x), F::ZERO);
assert_eq!(-x, F::ZERO - x);
assert_eq!(
x + x,
x.scalar_mul(<F as QuarticFieldExtension>::BaseField::TWO)
);
assert_eq!(x * (-x), -x.square());
assert_eq!(x + y, y + x);
assert_eq!(x * y, y * x);
assert_eq!(x * (y * z), (x * y) * z);
assert_eq!(x - (y + z), (x - y) - z);
assert_eq!((x + y) - z, x + (y - z));
assert_eq!(x * (y + z), x * y + x * z);
}
#[test]
fn test_inv_div() {
type F = QuarticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x * x.inverse(), F::ONE);
assert_eq!(x.inverse() * x, F::ONE);
assert_eq!(x.square().inverse(), x.inverse().square());
assert_eq!((x / y) * y, x);
assert_eq!(x / (y * z), (x / y) / z);
assert_eq!((x * y) / z, x * (y / z));
}
#[test]
fn test_frobenius() {
type F = QuarticCrandallField;
let x = F::rand();
assert_eq!(
exp_naive(x, <F as QuarticFieldExtension>::BaseField::ORDER as u128),
x.frobenius()
);
}
#[test]
fn test_field_order() {
// F::ORDER = 340282366831806780677557380898690695168 * 340282366831806780677557380898690695170 + 1
type F = QuarticCrandallField;
let x = F::rand();
assert_eq!(
exp_naive(
exp_naive(x, 340282366831806780677557380898690695168),
340282366831806780677557380898690695170
),
F::ONE
);
}
}