2021-03-28 15:36:51 -07:00
|
|
|
use crate::circuit_builder::CircuitBuilder;
|
|
|
|
|
use crate::field::field::Field;
|
2021-04-02 15:29:21 -07:00
|
|
|
use crate::gates::arithmetic::ArithmeticGate;
|
2021-04-21 22:31:45 +02:00
|
|
|
use crate::target::Target;
|
2021-04-02 15:29:21 -07:00
|
|
|
use crate::wire::Wire;
|
2021-04-21 11:47:18 -07:00
|
|
|
use crate::generator::SimpleGenerator;
|
|
|
|
|
use crate::witness::PartialWitness;
|
2021-03-28 15:36:51 -07:00
|
|
|
|
|
|
|
|
impl<F: Field> CircuitBuilder<F> {
|
2021-04-02 15:29:21 -07:00
|
|
|
pub fn neg(&mut self, x: Target) -> Target {
|
|
|
|
|
let neg_one = self.neg_one();
|
|
|
|
|
self.mul(x, neg_one)
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-21 11:47:18 -07:00
|
|
|
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
|
|
|
|
|
pub fn arithmetic(
|
|
|
|
|
&mut self,
|
|
|
|
|
const_0: F,
|
|
|
|
|
multiplicand_0: Target,
|
|
|
|
|
multiplicand_1: Target,
|
|
|
|
|
const_1: F,
|
|
|
|
|
addend: Target,
|
|
|
|
|
) -> Target {
|
|
|
|
|
// See if we can determine the result without adding an `ArithmeticGate`.
|
|
|
|
|
if let Some(result) = self.arithmetic_special_cases(
|
|
|
|
|
const_0, multiplicand_0, multiplicand_1, const_1, addend) {
|
|
|
|
|
return result;
|
2021-04-02 15:29:21 -07:00
|
|
|
}
|
|
|
|
|
|
2021-04-21 11:47:18 -07:00
|
|
|
let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]);
|
2021-04-02 15:29:21 -07:00
|
|
|
|
2021-04-21 22:31:45 +02:00
|
|
|
let wire_multiplicand_0 = Wire {
|
|
|
|
|
gate,
|
|
|
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
|
|
|
|
|
};
|
|
|
|
|
let wire_multiplicand_1 = Wire {
|
|
|
|
|
gate,
|
|
|
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
|
|
|
|
|
};
|
|
|
|
|
let wire_addend = Wire {
|
|
|
|
|
gate,
|
|
|
|
|
input: ArithmeticGate::WIRE_ADDEND,
|
|
|
|
|
};
|
|
|
|
|
let wire_output = Wire {
|
|
|
|
|
gate,
|
|
|
|
|
input: ArithmeticGate::WIRE_OUTPUT,
|
|
|
|
|
};
|
2021-04-02 15:29:21 -07:00
|
|
|
|
2021-04-21 11:47:18 -07:00
|
|
|
self.route(multiplicand_0, Target::Wire(wire_multiplicand_0));
|
|
|
|
|
self.route(multiplicand_1, Target::Wire(wire_multiplicand_1));
|
|
|
|
|
self.route(addend, Target::Wire(wire_addend));
|
2021-04-02 15:29:21 -07:00
|
|
|
Target::Wire(wire_output)
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-21 11:47:18 -07:00
|
|
|
/// Checks for special cases where the value of
|
|
|
|
|
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
|
|
|
|
|
/// can be determined without adding an `ArithmeticGate`.
|
|
|
|
|
fn arithmetic_special_cases(
|
|
|
|
|
&mut self,
|
|
|
|
|
const_0: F,
|
|
|
|
|
multiplicand_0: Target,
|
|
|
|
|
multiplicand_1: Target,
|
|
|
|
|
const_1: F,
|
|
|
|
|
addend: Target,
|
|
|
|
|
) -> Option<Target> {
|
|
|
|
|
let zero = self.zero();
|
|
|
|
|
|
|
|
|
|
let mul_0_const = self.target_as_constant(multiplicand_0);
|
|
|
|
|
let mul_1_const = self.target_as_constant(multiplicand_1);
|
|
|
|
|
let addend_const = self.target_as_constant(addend);
|
|
|
|
|
|
|
|
|
|
let first_term_zero = const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
|
|
|
|
|
let second_term_zero = const_1 == F::ZERO || addend == zero;
|
|
|
|
|
|
|
|
|
|
// If both terms are constant, return their (constant) sum.
|
|
|
|
|
let first_term_const = if first_term_zero {
|
|
|
|
|
Some(F::ZERO)
|
|
|
|
|
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
|
|
|
|
|
Some(const_0 * x * y)
|
|
|
|
|
} else {
|
|
|
|
|
None
|
|
|
|
|
};
|
|
|
|
|
let second_term_const = if second_term_zero {
|
|
|
|
|
Some(F::ZERO)
|
|
|
|
|
} else {
|
|
|
|
|
addend_const.map(|x| const_1 * x)
|
|
|
|
|
};
|
|
|
|
|
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
|
|
|
|
|
return Some(self.constant(x + y));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if first_term_zero {
|
|
|
|
|
if const_1.is_one() {
|
|
|
|
|
return Some(addend);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if second_term_zero {
|
|
|
|
|
if let Some(x) = mul_0_const {
|
|
|
|
|
if (const_0 * x).is_one() {
|
|
|
|
|
return Some(multiplicand_1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if let Some(x) = mul_1_const {
|
|
|
|
|
if (const_1 * x).is_one() {
|
|
|
|
|
return Some(multiplicand_0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
None
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn add(&mut self, x: Target, y: Target) -> Target {
|
|
|
|
|
let one = self.one();
|
|
|
|
|
// x + y = 1 * x * 1 + 1 * y
|
|
|
|
|
self.arithmetic(F::ONE, x, one, F::ONE, y)
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-02 15:29:21 -07:00
|
|
|
pub fn add_many(&mut self, terms: &[Target]) -> Target {
|
|
|
|
|
let mut sum = self.zero();
|
|
|
|
|
for term in terms {
|
|
|
|
|
sum = self.add(sum, *term);
|
|
|
|
|
}
|
|
|
|
|
sum
|
2021-03-28 15:36:51 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn sub(&mut self, x: Target, y: Target) -> Target {
|
2021-04-21 11:47:18 -07:00
|
|
|
let one = self.one();
|
|
|
|
|
// x - y = 1 * x * 1 + (-1) * y
|
|
|
|
|
self.arithmetic(F::ONE, x, one, F::NEG_ONE, y)
|
2021-03-28 15:36:51 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn mul(&mut self, x: Target, y: Target) -> Target {
|
2021-04-21 11:47:18 -07:00
|
|
|
// x * y = 1 * x * y + 0 * x
|
|
|
|
|
self.arithmetic(F::ONE, x, y, F::ZERO, x)
|
2021-03-28 15:36:51 -07:00
|
|
|
}
|
|
|
|
|
|
2021-04-02 15:29:21 -07:00
|
|
|
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
|
|
|
|
|
let mut product = self.one();
|
|
|
|
|
for term in terms {
|
|
|
|
|
product = self.mul(product, *term);
|
|
|
|
|
}
|
|
|
|
|
product
|
|
|
|
|
}
|
|
|
|
|
|
2021-04-21 11:47:18 -07:00
|
|
|
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
|
|
|
|
|
/// some cases, as it allows `0 / 0 = <anything>`.
|
|
|
|
|
pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target {
|
|
|
|
|
// Check for special cases where we can determine the result without an `ArithmeticGate`.
|
|
|
|
|
let zero = self.zero();
|
|
|
|
|
let one = self.one();
|
|
|
|
|
if x == zero {
|
|
|
|
|
return zero;
|
|
|
|
|
}
|
|
|
|
|
if y == one {
|
|
|
|
|
return x;
|
|
|
|
|
}
|
|
|
|
|
if let (Some(x_const), Some(y_const)) = (self.target_as_constant(x), self.target_as_constant(y)) {
|
|
|
|
|
return self.constant(x_const / y_const);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add an `ArithmeticGate` to compute `q * y`.
|
|
|
|
|
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
|
|
|
|
|
|
|
|
|
|
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
|
|
|
|
|
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
|
|
|
|
|
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
|
|
|
|
|
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
|
|
|
|
|
|
|
|
|
|
let q = Target::Wire(wire_multiplicand_0);
|
|
|
|
|
self.add_generator(QuotientGenerator {
|
|
|
|
|
numerator: x,
|
|
|
|
|
denominator: y,
|
|
|
|
|
quotient: q,
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
self.route(y, Target::Wire(wire_multiplicand_1));
|
|
|
|
|
|
|
|
|
|
// This can be anything, since the whole second term has a weight of zero.
|
|
|
|
|
self.route(zero, Target::Wire(wire_addend));
|
|
|
|
|
|
|
|
|
|
let q_y = Target::Wire(wire_output);
|
|
|
|
|
self.assert_equal(q_y, x);
|
|
|
|
|
|
|
|
|
|
q
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct QuotientGenerator {
|
|
|
|
|
numerator: Target,
|
|
|
|
|
denominator: Target,
|
|
|
|
|
quotient: Target,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<F: Field> SimpleGenerator<F> for QuotientGenerator {
|
|
|
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
|
|
|
vec![self.numerator, self.denominator]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
|
|
|
|
|
let num = witness.get_target(self.numerator);
|
|
|
|
|
let den = witness.get_target(self.denominator);
|
|
|
|
|
PartialWitness::singleton_target(self.quotient, num / den)
|
2021-03-28 15:36:51 -07:00
|
|
|
}
|
|
|
|
|
}
|