use crate::circuit_builder::CircuitBuilder; use crate::field::field::Field; use crate::gates::arithmetic::ArithmeticGate; use crate::target::Target; use crate::wire::Wire; use crate::generator::SimpleGenerator; use crate::witness::PartialWitness; impl CircuitBuilder { pub fn neg(&mut self, x: Target) -> Target { let neg_one = self.neg_one(); self.mul(x, neg_one) } /// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`. pub fn arithmetic( &mut self, const_0: F, multiplicand_0: Target, multiplicand_1: Target, const_1: F, addend: Target, ) -> Target { // See if we can determine the result without adding an `ArithmeticGate`. if let Some(result) = self.arithmetic_special_cases( const_0, multiplicand_0, multiplicand_1, const_1, addend) { return result; } let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]); let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0, }; let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1, }; let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND, }; let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT, }; self.route(multiplicand_0, Target::Wire(wire_multiplicand_0)); self.route(multiplicand_1, Target::Wire(wire_multiplicand_1)); self.route(addend, Target::Wire(wire_addend)); Target::Wire(wire_output) } /// Checks for special cases where the value of /// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend` /// can be determined without adding an `ArithmeticGate`. fn arithmetic_special_cases( &mut self, const_0: F, multiplicand_0: Target, multiplicand_1: Target, const_1: F, addend: Target, ) -> Option { let zero = self.zero(); let mul_0_const = self.target_as_constant(multiplicand_0); let mul_1_const = self.target_as_constant(multiplicand_1); let addend_const = self.target_as_constant(addend); let first_term_zero = const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero; let second_term_zero = const_1 == F::ZERO || addend == zero; // If both terms are constant, return their (constant) sum. let first_term_const = if first_term_zero { Some(F::ZERO) } else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) { Some(const_0 * x * y) } else { None }; let second_term_const = if second_term_zero { Some(F::ZERO) } else { addend_const.map(|x| const_1 * x) }; if let (Some(x), Some(y)) = (first_term_const, second_term_const) { return Some(self.constant(x + y)); } if first_term_zero { if const_1.is_one() { return Some(addend); } } if second_term_zero { if let Some(x) = mul_0_const { if (const_0 * x).is_one() { return Some(multiplicand_1); } } if let Some(x) = mul_1_const { if (const_1 * x).is_one() { return Some(multiplicand_0); } } } None } pub fn add(&mut self, x: Target, y: Target) -> Target { let one = self.one(); // x + y = 1 * x * 1 + 1 * y self.arithmetic(F::ONE, x, one, F::ONE, y) } pub fn add_many(&mut self, terms: &[Target]) -> Target { let mut sum = self.zero(); for term in terms { sum = self.add(sum, *term); } sum } pub fn sub(&mut self, x: Target, y: Target) -> Target { let one = self.one(); // x - y = 1 * x * 1 + (-1) * y self.arithmetic(F::ONE, x, one, F::NEG_ONE, y) } pub fn mul(&mut self, x: Target, y: Target) -> Target { // x * y = 1 * x * y + 0 * x self.arithmetic(F::ONE, x, y, F::ZERO, x) } pub fn mul_many(&mut self, terms: &[Target]) -> Target { let mut product = self.one(); for term in terms { product = self.mul(product, *term); } product } /// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in /// some cases, as it allows `0 / 0 = `. pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target { // Check for special cases where we can determine the result without an `ArithmeticGate`. let zero = self.zero(); let one = self.one(); if x == zero { return zero; } if y == one { return x; } if let (Some(x_const), Some(y_const)) = (self.target_as_constant(x), self.target_as_constant(y)) { return self.constant(x_const / y_const); } // Add an `ArithmeticGate` to compute `q * y`. let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]); let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 }; let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 }; let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND }; let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT }; let q = Target::Wire(wire_multiplicand_0); self.add_generator(QuotientGenerator { numerator: x, denominator: y, quotient: q, }); self.route(y, Target::Wire(wire_multiplicand_1)); // This can be anything, since the whole second term has a weight of zero. self.route(zero, Target::Wire(wire_addend)); let q_y = Target::Wire(wire_output); self.assert_equal(q_y, x); q } } struct QuotientGenerator { numerator: Target, denominator: Target, quotient: Target, } impl SimpleGenerator for QuotientGenerator { fn dependencies(&self) -> Vec { vec![self.numerator, self.denominator] } fn run_once(&self, witness: &PartialWitness) -> PartialWitness { let num = witness.get_target(self.numerator); let den = witness.get_target(self.denominator); PartialWitness::singleton_target(self.quotient, num / den) } }