mirror of
https://github.com/logos-storage/logos-storage-contracts-eth.git
synced 2026-02-22 05:53:09 +00:00
310 lines
8.7 KiB
Solidity
310 lines
8.7 KiB
Solidity
// This file is MIT Licensed.
|
|
//
|
|
// From: https://gist.githubusercontent.com/chriseth/f9be9d9391efc5beb9704255a8e2989d/raw/4d0fb90847df1d4e04d507019031888df8372239/snarktest.solidity
|
|
//
|
|
// Copyright 2017 Christian Reitwiessner
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
|
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
pragma solidity >=0.6.0 <=0.8.13;
|
|
|
|
library Curve {
|
|
// p = p(u) = 36u^4 + 36u^3 + 24u^2 + 6u + 1
|
|
uint256 internal constant FIELD_ORDER =
|
|
0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
|
|
|
|
// Number of elements in the field (often called `q`)
|
|
// n = n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1
|
|
uint256 internal constant GEN_ORDER =
|
|
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;
|
|
|
|
uint256 internal constant CURVE_B = 3;
|
|
|
|
// a = (p+1) / 4
|
|
uint256 internal constant CURVE_A =
|
|
0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52;
|
|
|
|
struct G1Point {
|
|
uint256 X;
|
|
uint256 Y;
|
|
}
|
|
|
|
// Encoding of field elements is: X[0] * z + X[1]
|
|
struct G2Point {
|
|
uint256[2] X;
|
|
uint256[2] Y;
|
|
}
|
|
|
|
// (P+1) / 4
|
|
function A() internal pure returns (uint256) {
|
|
return CURVE_A;
|
|
}
|
|
|
|
function B() internal pure returns (uint256) {
|
|
return CURVE_B;
|
|
}
|
|
|
|
function P() internal pure returns (uint256) {
|
|
return FIELD_ORDER;
|
|
}
|
|
|
|
function N() internal pure returns (uint256) {
|
|
return GEN_ORDER;
|
|
}
|
|
|
|
/// @return the generator of G1
|
|
function P1() internal pure returns (G1Point memory) {
|
|
return G1Point(1, 2);
|
|
}
|
|
|
|
function HashToPoint(uint256 s) internal view returns (G1Point memory) {
|
|
uint256 beta = 0;
|
|
uint256 y = 0;
|
|
|
|
// XXX: Gen Order (n) or Field Order (p) ?
|
|
uint256 x = s % GEN_ORDER;
|
|
|
|
while (true) {
|
|
(beta, y) = FindYforX(x);
|
|
|
|
// y^2 == beta
|
|
if (beta == mulmod(y, y, FIELD_ORDER)) {
|
|
return G1Point(x, y);
|
|
}
|
|
|
|
x = addmod(x, 1, FIELD_ORDER);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given X, find Y
|
|
*
|
|
* where y = sqrt(x^3 + b)
|
|
*
|
|
* Returns: (x^3 + b), y
|
|
*/
|
|
function FindYforX(uint256 x) internal view returns (uint256, uint256) {
|
|
// beta = (x^3 + b) % p
|
|
uint256 beta = addmod(
|
|
mulmod(mulmod(x, x, FIELD_ORDER), x, FIELD_ORDER),
|
|
CURVE_B,
|
|
FIELD_ORDER
|
|
);
|
|
|
|
// y^2 = x^3 + b
|
|
// this acts like: y = sqrt(beta)
|
|
uint256 y = expMod(beta, CURVE_A, FIELD_ORDER);
|
|
|
|
return (beta, y);
|
|
}
|
|
|
|
// a - b = c;
|
|
function submod(uint256 a, uint256 b) internal pure returns (uint256) {
|
|
uint256 a_nn;
|
|
|
|
if (a > b) {
|
|
a_nn = a;
|
|
} else {
|
|
a_nn = a + GEN_ORDER;
|
|
}
|
|
|
|
return addmod(a_nn - b, 0, GEN_ORDER);
|
|
}
|
|
|
|
function expMod(
|
|
uint256 _base,
|
|
uint256 _exponent,
|
|
uint256 _modulus
|
|
) internal view returns (uint256 retval) {
|
|
bool success;
|
|
uint256[1] memory output;
|
|
uint256[6] memory input;
|
|
input[0] = 0x20; // baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
|
|
input[1] = 0x20; // expLen = new(big.Int).SetBytes(getData(input, 32, 32))
|
|
input[2] = 0x20; // modLen = new(big.Int).SetBytes(getData(input, 64, 32))
|
|
input[3] = _base;
|
|
input[4] = _exponent;
|
|
input[5] = _modulus;
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 5, input, 0xc0, output, 0x20)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success
|
|
case 0 {
|
|
invalid()
|
|
}
|
|
}
|
|
require(success);
|
|
return output[0];
|
|
}
|
|
|
|
/// @return the generator of G2
|
|
function P2() internal pure returns (G2Point memory) {
|
|
return
|
|
G2Point(
|
|
[
|
|
11559732032986387107991004021392285783925812861821192530917403151452391805634,
|
|
10857046999023057135944570762232829481370756359578518086990519993285655852781
|
|
],
|
|
[
|
|
4082367875863433681332203403145435568316851327593401208105741076214120093531,
|
|
8495653923123431417604973247489272438418190587263600148770280649306958101930
|
|
]
|
|
);
|
|
}
|
|
|
|
/// @return the negation of p, i.e. p.add(p.negate()) should be zero.
|
|
function g1neg(G1Point memory p)
|
|
internal pure returns (G1Point memory)
|
|
{
|
|
// The prime q in the base field F_q for G1
|
|
uint256 q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
if (p.X == 0 && p.Y == 0) return G1Point(0, 0);
|
|
return G1Point(p.X, q - (p.Y % q));
|
|
}
|
|
|
|
/// @return r the sum of two points of G1
|
|
function g1add(G1Point memory p1, G1Point memory p2)
|
|
internal view returns (G1Point memory r)
|
|
{
|
|
uint256[4] memory input;
|
|
input[0] = p1.X;
|
|
input[1] = p1.Y;
|
|
input[2] = p2.X;
|
|
input[3] = p2.Y;
|
|
bool success;
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success
|
|
case 0 {
|
|
invalid()
|
|
}
|
|
}
|
|
require(success);
|
|
}
|
|
|
|
/// @return r the product of a point on G1 and a scalar, i.e.
|
|
/// p == p.mul(1) and p.add(p) == p.mul(2) for all points p.
|
|
function g1mul(G1Point memory p, uint256 s)
|
|
internal view returns (G1Point memory r)
|
|
{
|
|
uint256[3] memory input;
|
|
input[0] = p.X;
|
|
input[1] = p.Y;
|
|
input[2] = s;
|
|
bool success;
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success
|
|
case 0 {
|
|
invalid()
|
|
}
|
|
}
|
|
require(success);
|
|
}
|
|
|
|
/// @return the result of computing the pairing check
|
|
/// e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
|
|
/// For example pairing([P1(), P1().negate()], [P2(), P2()]) should
|
|
/// return true.
|
|
function pairing(G1Point[] memory p1, G2Point[] memory p2)
|
|
internal
|
|
view
|
|
returns (bool)
|
|
{
|
|
require(p1.length == p2.length);
|
|
uint256 elements = p1.length;
|
|
uint256 inputSize = elements * 6;
|
|
uint256[] memory input = new uint256[](inputSize);
|
|
for (uint256 i = 0; i < elements; i++) {
|
|
input[i * 6 + 0] = p1[i].X;
|
|
input[i * 6 + 1] = p1[i].Y;
|
|
input[i * 6 + 2] = p2[i].X[0];
|
|
input[i * 6 + 3] = p2[i].X[1];
|
|
input[i * 6 + 4] = p2[i].Y[0];
|
|
input[i * 6 + 5] = p2[i].Y[1];
|
|
}
|
|
uint256[1] memory out;
|
|
bool success;
|
|
assembly {
|
|
success := staticcall(
|
|
sub(gas(), 2000),
|
|
8,
|
|
add(input, 0x20),
|
|
mul(inputSize, 0x20),
|
|
out,
|
|
0x20
|
|
)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success
|
|
case 0 {
|
|
invalid()
|
|
}
|
|
}
|
|
require(success);
|
|
return out[0] != 0;
|
|
}
|
|
|
|
/// Convenience method for a pairing check for two pairs.
|
|
function pairingProd2(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2
|
|
) internal view returns (bool) {
|
|
G1Point[] memory p1 = new G1Point[](2);
|
|
G2Point[] memory p2 = new G2Point[](2);
|
|
p1[0] = a1;
|
|
p1[1] = b1;
|
|
p2[0] = a2;
|
|
p2[1] = b2;
|
|
return pairing(p1, p2);
|
|
}
|
|
|
|
/// Convenience method for a pairing check for three pairs.
|
|
function pairingProd3(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2,
|
|
G1Point memory c1,
|
|
G2Point memory c2
|
|
) internal view returns (bool) {
|
|
G1Point[] memory p1 = new G1Point[](3);
|
|
G2Point[] memory p2 = new G2Point[](3);
|
|
p1[0] = a1;
|
|
p1[1] = b1;
|
|
p1[2] = c1;
|
|
p2[0] = a2;
|
|
p2[1] = b2;
|
|
p2[2] = c2;
|
|
return pairing(p1, p2);
|
|
}
|
|
|
|
/// Convenience method for a pairing check for four pairs.
|
|
function pairingProd4(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2,
|
|
G1Point memory c1,
|
|
G2Point memory c2,
|
|
G1Point memory d1,
|
|
G2Point memory d2
|
|
) internal view returns (bool) {
|
|
G1Point[] memory p1 = new G1Point[](4);
|
|
G2Point[] memory p2 = new G2Point[](4);
|
|
p1[0] = a1;
|
|
p1[1] = b1;
|
|
p1[2] = c1;
|
|
p1[3] = d1;
|
|
p2[0] = a2;
|
|
p2[1] = b2;
|
|
p2[2] = c2;
|
|
p2[3] = d2;
|
|
return pairing(p1, p2);
|
|
}
|
|
}
|