mirror of
https://github.com/logos-storage/logos-storage-contracts-eth.git
synced 2026-01-12 18:23:08 +00:00
WIP: Swap over to AltBn254 solidity lib
Still need to figure out how to stringify TauZero and verify the signature.
This commit is contained in:
parent
1d4f9729b0
commit
36c84f58b6
@ -2,6 +2,7 @@
|
||||
pragma solidity >=0.6.0 <=0.8.13;
|
||||
|
||||
import "bls-solidity/contracts/BN256G1.sol";
|
||||
import "./ecc/AltBn254.sol";
|
||||
import "elliptic-curve-solidity/contracts/EllipticCurve.sol";
|
||||
|
||||
contract Proofs {
|
||||
@ -285,21 +286,24 @@ contract Proofs {
|
||||
|
||||
struct TauZero {
|
||||
// bytes[512] name; // array[512, byte], byte is alias for uint8
|
||||
bytes name;
|
||||
int64 n;
|
||||
BnP1[] u; // seq[blst_p1]
|
||||
bytes name;
|
||||
int64 n;
|
||||
Curve.G1Point[] u; // seq[blst_p1]
|
||||
}
|
||||
|
||||
struct Tau {
|
||||
TauZero t;
|
||||
bytes32[96] signature;
|
||||
TauZero t;
|
||||
// bytes32[96] signature;
|
||||
Curve.G1Point signature;
|
||||
}
|
||||
|
||||
// x', y' affine coordinates, result of EllipticCurve.ecMul
|
||||
// e.g. https://github.com/witnet/elliptic-curve-solidity/blob/master/examples/Secp256k1.sol
|
||||
struct PublicKey {
|
||||
uint256 x;
|
||||
uint256 y;
|
||||
Curve.G1Point signkey;
|
||||
Curve.G2Point key;
|
||||
// uint256 x;
|
||||
// uint256 y;
|
||||
}
|
||||
|
||||
struct QElement {
|
||||
@ -314,21 +318,21 @@ contract Proofs {
|
||||
}
|
||||
return false;
|
||||
}
|
||||
function toBnP1(uint x, uint y) internal pure returns(BnP1 memory p1) {
|
||||
p1 = BnP1(
|
||||
{
|
||||
x: BnFp({ls: x}),
|
||||
y: BnFp({ls: y})
|
||||
});
|
||||
}
|
||||
// function toBnP1(uint x, uint y) internal pure returns(BnP1 memory p1) {
|
||||
// p1 = BnP1(
|
||||
// {
|
||||
// x: BnFp({ls: x}),
|
||||
// y: BnFp({ls: y})
|
||||
// });
|
||||
// }
|
||||
|
||||
function toBnP2(uint x, uint y) internal pure returns(BnP2 memory p2) {
|
||||
p2 = BnP2(
|
||||
{
|
||||
x: BnFp2({ls: x}),
|
||||
y: BnFp2({ls: y})
|
||||
});
|
||||
}
|
||||
// function toBnP2(uint x, uint y) internal pure returns(BnP2 memory p2) {
|
||||
// p2 = BnP2(
|
||||
// {
|
||||
// x: BnFp2({ls: x}),
|
||||
// y: BnFp2({ls: y})
|
||||
// });
|
||||
// }
|
||||
|
||||
// proc pairing(a: blst_p1, b: blst_p2): blst_fp12 =
|
||||
// ## Calculate pairing G_1,G_2 -> G_T
|
||||
@ -339,39 +343,72 @@ contract Proofs {
|
||||
// var l: blst_fp12
|
||||
// blst_miller_loop(l, bb, aa)
|
||||
// blst_final_exp(result, l)
|
||||
function _pairing (BnP1 memory a, BnP2 memory b) internal returns (BnFp12 memory fp12) {
|
||||
(uint aax, uint aay) = EllipticCurve.toAffine(a.x, a.y, _z, BN256G1.PP);
|
||||
(uint bbx, uint bby) = EllipticCurve.toAffine(b.x, b.y, _z, BN256G1.PP);
|
||||
// function _pairing (BnP1 memory a, BnP2 memory b) internal returns (BnFp12 memory fp12) {
|
||||
// (uint aax, uint aay) = EllipticCurve.toAffine(a.x, a.y, _z, BN256G1.PP);
|
||||
// (uint bbx, uint bby) = EllipticCurve.toAffine(b.x, b.y, _z, BN256G1.PP);
|
||||
// }
|
||||
|
||||
// function _verifyPairings (
|
||||
// BnP1 memory a1,
|
||||
// BnP2 memory a2,
|
||||
// BnP1 memory b1,
|
||||
// BnP2 memory b2) internal returns (bool) {
|
||||
|
||||
// // let e1 = pairing(a1, a2)
|
||||
// // let e2 = pairing(b1, b2)
|
||||
// // return e1 == e2
|
||||
// BnFp12 memory e1 = _pairing(a1, a2);
|
||||
// BnFp12 memory e2 = _pairing(b1, b2);
|
||||
// return e1 == e2;
|
||||
|
||||
// }
|
||||
|
||||
// Example of BLS signature verification
|
||||
// Taken from: https://ethereum.stackexchange.com/a/59315
|
||||
function _verifySignature(
|
||||
Curve.G1Point memory sig,
|
||||
Curve.G2Point memory signkey,
|
||||
uint hashedMsg) internal view returns (bool)
|
||||
{
|
||||
|
||||
// bytes memory message = hex"7b0a2020226f70656e223a207b0a20202020227072696365223a2039353931372c0a202020202274696d65223a207b0a20202020202022756e6978223a20313438333134323430302c0a2020202020202269736f223a2022323031362d31322d33315430303a30303a30302e3030305a220a202020207d0a20207d2c0a202022636c6f7365223a207b0a20202020227072696365223a2039363736302c0a202020202274696d65223a207b0a20202020202022756e6978223a20313438333232383830302c0a2020202020202269736f223a2022323031372d30312d30315430303a30303a30302e3030305a220a202020207d0a20207d2c0a2020226c6f6f6b7570223a207b0a20202020227072696365223a2039363736302c0a20202020226b223a20312c0a202020202274696d65223a207b0a20202020202022756e6978223a20313438333232383830302c0a2020202020202269736f223a2022323031372d30312d30315430303a30303a30302e3030305a220a202020207d0a20207d0a7d0a6578616d706c652e636f6d2f6170692f31";
|
||||
|
||||
// Curve.G1Point memory signature = Curve.G1Point(11181692345848957662074290878138344227085597134981019040735323471731897153462, 6479746447046570360435714249272776082787932146211764251347798668447381926167);
|
||||
|
||||
// Curve.G2Point memory v = Curve.G2Point(
|
||||
// [18523194229674161632574346342370534213928970227736813349975332190798837787897, 5725452645840548248571879966249653216818629536104756116202892528545334967238],
|
||||
// [3816656720215352836236372430537606984911914992659540439626020770732736710924, 677280212051826798882467475639465784259337739185938192379192340908771705870]
|
||||
// );
|
||||
|
||||
Curve.G1Point memory h = Curve.HashToPoint(hashedMsg);
|
||||
|
||||
return Curve.pairingProd2(Curve.g1neg(sig), Curve.P2(), h, signkey);
|
||||
}
|
||||
|
||||
function _verifyPairings (
|
||||
BnP1 memory a1,
|
||||
BnP2 memory a2,
|
||||
BnP1 memory b1,
|
||||
BnP2 memory b2) internal returns (bool) {
|
||||
|
||||
// let e1 = pairing(a1, a2)
|
||||
// let e2 = pairing(b1, b2)
|
||||
// return e1 == e2
|
||||
BnFp12 memory e1 = _pairing(a1, a2);
|
||||
BnFp12 memory e2 = _pairing(b1, b2);
|
||||
return e1 == e2;
|
||||
|
||||
function _isOnCurve(Curve.G1Point memory g1) internal view returns (bool) {
|
||||
return EllipticCurve.isOnCurve(
|
||||
g1.X,
|
||||
g1.Y,
|
||||
Curve.A(),
|
||||
Curve.B(),
|
||||
Curve.P());
|
||||
}
|
||||
function _verifyProof(
|
||||
Tau memory tau,
|
||||
QElement[] memory q,
|
||||
BnFr[10] memory mus,
|
||||
// Possibly 48 bytes long, csaba?
|
||||
BnP1 memory sigma,
|
||||
// If only 48 bytes, how can it be a G1Point? (x, y both only 24 bytes?)
|
||||
Curve.G1Point memory sigma,
|
||||
PublicKey memory spk) internal returns (bool) {
|
||||
|
||||
// is this really needed?
|
||||
require(!isEmpty(tau.signature), "Signature cannot be empty");
|
||||
// is this needed in solidity?
|
||||
// require(!isEmpty(tau.signature), "Signature cannot be empty");
|
||||
|
||||
// TODO: add verification
|
||||
// if not verify(spk.signkey, $tau.t, signature):
|
||||
// return false
|
||||
// $tau.t -- how to do this in solidity?
|
||||
uint hashedMsg = uint(sha256(abi.encodePacked(tau.t)));
|
||||
require(_verifySignature(tau.signature, spk.signkey, hashedMsg),
|
||||
"invalid signature");
|
||||
|
||||
// var first: blst_p1
|
||||
// for qelem in q :
|
||||
@ -379,21 +416,19 @@ contract Proofs {
|
||||
// prod.blst_p1_mult(hashNameI(tau.t.name, qelem.I), qelem.V, 255)
|
||||
// first.blst_p1_add_or_double(first, prod)
|
||||
// doAssert(blst_p1_on_curve(first).bool)
|
||||
// BnP1 memory first;
|
||||
uint firstX;
|
||||
uint firstY;
|
||||
Curve.G1Point memory first;
|
||||
for (uint i = 0; i<q.length; i++) {
|
||||
QElement memory qelem = q[i];
|
||||
bytes memory namei = abi.encodePacked(tau.t.name, qelem.i);
|
||||
(uint x, uint y) = BN256G1.hashToTryAndIncrement(namei); // affine coords, BnP1 (but we don't really need to convert to BnP1)
|
||||
bytes32 namei = sha256(abi.encodePacked(tau.t.name, qelem.i));
|
||||
// Step 4: arbitraty string to point and check if it is on curve
|
||||
uint hPointX = uint256(namei);
|
||||
Curve.G1Point memory h = Curve.HashToPoint(hPointX);
|
||||
// TODO: Where does 255 get used???
|
||||
// TODO: Can we convert qelem.v.ls from a 32 byte array to a uint256 without worry?
|
||||
// TODO: It's very hard to know if multiply takes jacobian or affine coords...???
|
||||
(uint prodX, uint prodY) = BN256G1.multiply([x, y, uint(qelem.v.ls)]);
|
||||
// BnP1 memory prod = toBnP1(prodX, prodY);
|
||||
(firstX, firstY) = BN256G1.add([firstX, firstY, prodX, prodY]);
|
||||
// first = toBnP1(sumX, sumY);
|
||||
require(BN256G1.isOnCurve([firstX, firstY]), "First point must be on BN254 curve");
|
||||
Curve.G1Point memory prod = Curve.g1mul(h, uint(qelem.v.ls));
|
||||
first = Curve.g1add(first, prod);
|
||||
require(_isOnCurve(first), "must be on BN254 curve");
|
||||
}
|
||||
// let us = tau.t.u
|
||||
// var second: blst_p1
|
||||
@ -402,33 +437,25 @@ contract Proofs {
|
||||
// prod.blst_p1_mult(us[j], mus[j], 255)
|
||||
// second.blst_p1_add_or_double(second, prod)
|
||||
// doAssert(blst_p1_on_curve(second).bool)
|
||||
BnP1[] memory us = tau.t.u;
|
||||
// BnP1 memory second;
|
||||
uint secondX;
|
||||
uint secondY;
|
||||
Curve.G1Point[] memory us = tau.t.u;
|
||||
Curve.G1Point memory second;
|
||||
for (uint j = 0; j<us.length; j++) {
|
||||
BnP1 memory usP1 = us[j];
|
||||
// TODO: Where does 255 get used???
|
||||
(uint prodX, uint prodY) = BN256G1.multiply([usP1.x.ls, usP1.y.ls, mus[j].ls]);
|
||||
// BnP1 memory prod = toBnP1(prodX, prodY);
|
||||
(secondX, secondY) = BN256G1.add([secondX, secondY, prodX, prodY]);
|
||||
// first = toBnP1(sumX, sumY);
|
||||
require(BN256G1.isOnCurve([secondX, secondY]), "Second point must be on BN254 curve");
|
||||
Curve.G1Point memory prod = Curve.g1mul(us[j], mus[j].ls);
|
||||
second = Curve.g1add(second, prod);
|
||||
require(_isOnCurve(second), "must be on BN254 curve");
|
||||
}
|
||||
|
||||
// var sum: blst_p1
|
||||
// sum.blst_p1_add_or_double(first, second)
|
||||
(uint sumX, uint sumY) = BN256G1.add([firstX, firstY, secondX, secondY]);
|
||||
// BnP1 memory sum = toBnP1(sumX, sumY);
|
||||
Curve.G1Point memory sum = Curve.g1add(first, second);
|
||||
|
||||
// var g{.noInit.}: blst_p2
|
||||
// g.blst_p2_from_affine(BLS12_381_G2)
|
||||
BnP2 memory g;
|
||||
// TODO: do we need to convert Curve.P2() to/from affine???
|
||||
|
||||
// return verifyPairings(sum, spk.key, sigma, g)
|
||||
BnP1 a1 = toBnP1(sumX, sumY);
|
||||
BnP2 a2 = toBnP2(spk.x, spk.y);
|
||||
return _verifyPairings(a1, a2, sigma, g);
|
||||
return Curve.pairingProd2(sum, spk.key, sigma, Curve.P2());
|
||||
|
||||
}
|
||||
|
||||
|
||||
309
contracts/ecc/AltBn254.sol
Normal file
309
contracts/ecc/AltBn254.sol
Normal file
@ -0,0 +1,309 @@
|
||||
// This file is MIT Licensed.
|
||||
//
|
||||
// From: https://gist.githubusercontent.com/chriseth/f9be9d9391efc5beb9704255a8e2989d/raw/4d0fb90847df1d4e04d507019031888df8372239/snarktest.solidity
|
||||
//
|
||||
// Copyright 2017 Christian Reitwiessner
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
pragma solidity >=0.6.0 <=0.8.13;
|
||||
|
||||
library Curve {
|
||||
// p = p(u) = 36u^4 + 36u^3 + 24u^2 + 6u + 1
|
||||
uint256 internal constant FIELD_ORDER =
|
||||
0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
|
||||
|
||||
// Number of elements in the field (often called `q`)
|
||||
// n = n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1
|
||||
uint256 internal constant GEN_ORDER =
|
||||
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;
|
||||
|
||||
uint256 internal constant CURVE_B = 3;
|
||||
|
||||
// a = (p+1) / 4
|
||||
uint256 internal constant CURVE_A =
|
||||
0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52;
|
||||
|
||||
struct G1Point {
|
||||
uint256 X;
|
||||
uint256 Y;
|
||||
}
|
||||
|
||||
// Encoding of field elements is: X[0] * z + X[1]
|
||||
struct G2Point {
|
||||
uint256[2] X;
|
||||
uint256[2] Y;
|
||||
}
|
||||
|
||||
// (P+1) / 4
|
||||
function A() internal pure returns (uint256) {
|
||||
return CURVE_A;
|
||||
}
|
||||
|
||||
function B() internal pure returns (uint256) {
|
||||
return CURVE_B;
|
||||
}
|
||||
|
||||
function P() internal pure returns (uint256) {
|
||||
return FIELD_ORDER;
|
||||
}
|
||||
|
||||
function N() internal pure returns (uint256) {
|
||||
return GEN_ORDER;
|
||||
}
|
||||
|
||||
/// @return the generator of G1
|
||||
function P1() internal pure returns (G1Point memory) {
|
||||
return G1Point(1, 2);
|
||||
}
|
||||
|
||||
function HashToPoint(uint256 s) internal view returns (G1Point memory) {
|
||||
uint256 beta = 0;
|
||||
uint256 y = 0;
|
||||
|
||||
// XXX: Gen Order (n) or Field Order (p) ?
|
||||
uint256 x = s % GEN_ORDER;
|
||||
|
||||
while (true) {
|
||||
(beta, y) = FindYforX(x);
|
||||
|
||||
// y^2 == beta
|
||||
if (beta == mulmod(y, y, FIELD_ORDER)) {
|
||||
return G1Point(x, y);
|
||||
}
|
||||
|
||||
x = addmod(x, 1, FIELD_ORDER);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Given X, find Y
|
||||
*
|
||||
* where y = sqrt(x^3 + b)
|
||||
*
|
||||
* Returns: (x^3 + b), y
|
||||
*/
|
||||
function FindYforX(uint256 x) internal view returns (uint256, uint256) {
|
||||
// beta = (x^3 + b) % p
|
||||
uint256 beta = addmod(
|
||||
mulmod(mulmod(x, x, FIELD_ORDER), x, FIELD_ORDER),
|
||||
CURVE_B,
|
||||
FIELD_ORDER
|
||||
);
|
||||
|
||||
// y^2 = x^3 + b
|
||||
// this acts like: y = sqrt(beta)
|
||||
uint256 y = expMod(beta, CURVE_A, FIELD_ORDER);
|
||||
|
||||
return (beta, y);
|
||||
}
|
||||
|
||||
// a - b = c;
|
||||
function submod(uint256 a, uint256 b) internal pure returns (uint256) {
|
||||
uint256 a_nn;
|
||||
|
||||
if (a > b) {
|
||||
a_nn = a;
|
||||
} else {
|
||||
a_nn = a + GEN_ORDER;
|
||||
}
|
||||
|
||||
return addmod(a_nn - b, 0, GEN_ORDER);
|
||||
}
|
||||
|
||||
function expMod(
|
||||
uint256 _base,
|
||||
uint256 _exponent,
|
||||
uint256 _modulus
|
||||
) internal view returns (uint256 retval) {
|
||||
bool success;
|
||||
uint256[1] memory output;
|
||||
uint256[6] memory input;
|
||||
input[0] = 0x20; // baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
|
||||
input[1] = 0x20; // expLen = new(big.Int).SetBytes(getData(input, 32, 32))
|
||||
input[2] = 0x20; // modLen = new(big.Int).SetBytes(getData(input, 64, 32))
|
||||
input[3] = _base;
|
||||
input[4] = _exponent;
|
||||
input[5] = _modulus;
|
||||
assembly {
|
||||
success := staticcall(sub(gas(), 2000), 5, input, 0xc0, output, 0x20)
|
||||
// Use "invalid" to make gas estimation work
|
||||
switch success
|
||||
case 0 {
|
||||
invalid()
|
||||
}
|
||||
}
|
||||
require(success);
|
||||
return output[0];
|
||||
}
|
||||
|
||||
/// @return the generator of G2
|
||||
function P2() internal pure returns (G2Point memory) {
|
||||
return
|
||||
G2Point(
|
||||
[
|
||||
11559732032986387107991004021392285783925812861821192530917403151452391805634,
|
||||
10857046999023057135944570762232829481370756359578518086990519993285655852781
|
||||
],
|
||||
[
|
||||
4082367875863433681332203403145435568316851327593401208105741076214120093531,
|
||||
8495653923123431417604973247489272438418190587263600148770280649306958101930
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
/// @return the negation of p, i.e. p.add(p.negate()) should be zero.
|
||||
function g1neg(G1Point memory p)
|
||||
internal pure returns (G1Point memory)
|
||||
{
|
||||
// The prime q in the base field F_q for G1
|
||||
uint256 q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
||||
if (p.X == 0 && p.Y == 0) return G1Point(0, 0);
|
||||
return G1Point(p.X, q - (p.Y % q));
|
||||
}
|
||||
|
||||
/// @return r the sum of two points of G1
|
||||
function g1add(G1Point memory p1, G1Point memory p2)
|
||||
internal view returns (G1Point memory r)
|
||||
{
|
||||
uint256[4] memory input;
|
||||
input[0] = p1.X;
|
||||
input[1] = p1.Y;
|
||||
input[2] = p2.X;
|
||||
input[3] = p2.Y;
|
||||
bool success;
|
||||
assembly {
|
||||
success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
|
||||
// Use "invalid" to make gas estimation work
|
||||
switch success
|
||||
case 0 {
|
||||
invalid()
|
||||
}
|
||||
}
|
||||
require(success);
|
||||
}
|
||||
|
||||
/// @return r the product of a point on G1 and a scalar, i.e.
|
||||
/// p == p.mul(1) and p.add(p) == p.mul(2) for all points p.
|
||||
function g1mul(G1Point memory p, uint256 s)
|
||||
internal view returns (G1Point memory r)
|
||||
{
|
||||
uint256[3] memory input;
|
||||
input[0] = p.X;
|
||||
input[1] = p.Y;
|
||||
input[2] = s;
|
||||
bool success;
|
||||
assembly {
|
||||
success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
|
||||
// Use "invalid" to make gas estimation work
|
||||
switch success
|
||||
case 0 {
|
||||
invalid()
|
||||
}
|
||||
}
|
||||
require(success);
|
||||
}
|
||||
|
||||
/// @return the result of computing the pairing check
|
||||
/// e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
|
||||
/// For example pairing([P1(), P1().negate()], [P2(), P2()]) should
|
||||
/// return true.
|
||||
function pairing(G1Point[] memory p1, G2Point[] memory p2)
|
||||
internal
|
||||
view
|
||||
returns (bool)
|
||||
{
|
||||
require(p1.length == p2.length);
|
||||
uint256 elements = p1.length;
|
||||
uint256 inputSize = elements * 6;
|
||||
uint256[] memory input = new uint256[](inputSize);
|
||||
for (uint256 i = 0; i < elements; i++) {
|
||||
input[i * 6 + 0] = p1[i].X;
|
||||
input[i * 6 + 1] = p1[i].Y;
|
||||
input[i * 6 + 2] = p2[i].X[0];
|
||||
input[i * 6 + 3] = p2[i].X[1];
|
||||
input[i * 6 + 4] = p2[i].Y[0];
|
||||
input[i * 6 + 5] = p2[i].Y[1];
|
||||
}
|
||||
uint256[1] memory out;
|
||||
bool success;
|
||||
assembly {
|
||||
success := staticcall(
|
||||
sub(gas(), 2000),
|
||||
8,
|
||||
add(input, 0x20),
|
||||
mul(inputSize, 0x20),
|
||||
out,
|
||||
0x20
|
||||
)
|
||||
// Use "invalid" to make gas estimation work
|
||||
switch success
|
||||
case 0 {
|
||||
invalid()
|
||||
}
|
||||
}
|
||||
require(success);
|
||||
return out[0] != 0;
|
||||
}
|
||||
|
||||
/// Convenience method for a pairing check for two pairs.
|
||||
function pairingProd2(
|
||||
G1Point memory a1,
|
||||
G2Point memory a2,
|
||||
G1Point memory b1,
|
||||
G2Point memory b2
|
||||
) internal view returns (bool) {
|
||||
G1Point[] memory p1 = new G1Point[](2);
|
||||
G2Point[] memory p2 = new G2Point[](2);
|
||||
p1[0] = a1;
|
||||
p1[1] = b1;
|
||||
p2[0] = a2;
|
||||
p2[1] = b2;
|
||||
return pairing(p1, p2);
|
||||
}
|
||||
|
||||
/// Convenience method for a pairing check for three pairs.
|
||||
function pairingProd3(
|
||||
G1Point memory a1,
|
||||
G2Point memory a2,
|
||||
G1Point memory b1,
|
||||
G2Point memory b2,
|
||||
G1Point memory c1,
|
||||
G2Point memory c2
|
||||
) internal view returns (bool) {
|
||||
G1Point[] memory p1 = new G1Point[](3);
|
||||
G2Point[] memory p2 = new G2Point[](3);
|
||||
p1[0] = a1;
|
||||
p1[1] = b1;
|
||||
p1[2] = c1;
|
||||
p2[0] = a2;
|
||||
p2[1] = b2;
|
||||
p2[2] = c2;
|
||||
return pairing(p1, p2);
|
||||
}
|
||||
|
||||
/// Convenience method for a pairing check for four pairs.
|
||||
function pairingProd4(
|
||||
G1Point memory a1,
|
||||
G2Point memory a2,
|
||||
G1Point memory b1,
|
||||
G2Point memory b2,
|
||||
G1Point memory c1,
|
||||
G2Point memory c2,
|
||||
G1Point memory d1,
|
||||
G2Point memory d2
|
||||
) internal view returns (bool) {
|
||||
G1Point[] memory p1 = new G1Point[](4);
|
||||
G2Point[] memory p2 = new G2Point[](4);
|
||||
p1[0] = a1;
|
||||
p1[1] = b1;
|
||||
p1[2] = c1;
|
||||
p1[3] = d1;
|
||||
p2[0] = a2;
|
||||
p2[1] = b2;
|
||||
p2[2] = c2;
|
||||
p2[3] = d2;
|
||||
return pairing(p1, p2);
|
||||
}
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user