mirror of
https://github.com/logos-storage/das-research.git
synced 2026-01-02 13:13:09 +00:00
119 lines
3.7 KiB
Python
119 lines
3.7 KiB
Python
import networkx as nx
|
|
import random
|
|
import matplotlib.pyplot as plt
|
|
import sys
|
|
from datetime import datetime
|
|
import os
|
|
|
|
|
|
def plotData(conf):
|
|
for key, value in conf['y'].items():
|
|
plt.plot(conf['x'], value, label=f"{conf['label']}: {key}")
|
|
plt.xlabel(conf['xlabel'])
|
|
plt.ylabel(conf['ylabel'])
|
|
plt.title(conf['title'])
|
|
plt.legend()
|
|
plt.savefig(conf['plotPath'])
|
|
plt.clf()
|
|
|
|
def isGConnected(deg, nodes, mal):
|
|
G = nx.random_regular_graph(deg, nodes)
|
|
malNodes = random.sample(list(G.nodes()), k=mal * nodes // 100)
|
|
for mn in malNodes:
|
|
G.remove_node(mn)
|
|
|
|
return nx.is_connected(G)
|
|
|
|
def getValidatorCountPerColumn(numberOfCols, numOfValidators, chiC):
|
|
validatorCountPerColumn = dict()
|
|
for _ in range(numOfValidators):
|
|
colsSelected = random.sample(list(range(1, numberOfCols + 1)), chiC)
|
|
for col in colsSelected:
|
|
if col in validatorCountPerColumn.keys():
|
|
validatorCountPerColumn[col] += 1
|
|
else:
|
|
validatorCountPerColumn[col] = 0
|
|
|
|
return validatorCountPerColumn
|
|
|
|
def runOnce(run_i, runs, deg, validatorCountPerCol, malNodesPercentage):
|
|
print(f"Running: {run_i + 1} / {runs}")
|
|
|
|
isParted = False
|
|
partCount = 0
|
|
isPartedCount = 0
|
|
for col in validatorCountPerCol.keys():
|
|
nodes = validatorCountPerCol[col]
|
|
if not isGConnected(deg, nodes, malNodesPercentage):
|
|
if not isParted: isParted = True
|
|
partCount += 1
|
|
|
|
if isParted: isPartedCount += 1
|
|
sys.stdout.write("\033[F")
|
|
|
|
return isPartedCount, partCount
|
|
|
|
def study():
|
|
degPartPercentages = dict()
|
|
degAvgDisconnectedCols = dict()
|
|
|
|
for deg in degs:
|
|
print(f"\nNetwork Degree: {deg}")
|
|
|
|
partPercentages = list()
|
|
avgDisconnectedCols = list()
|
|
for mal in mals:
|
|
isPartedCount = partCount = 0
|
|
validatorCountPerColumn = getValidatorCountPerColumn(numberOfColumns, numberOfValidators, custody)
|
|
for _run in range(runs):
|
|
_isPartedCount, _partCount = runOnce(_run, runs, deg, validatorCountPerColumn, mal)
|
|
isPartedCount += _isPartedCount
|
|
partCount += _partCount
|
|
|
|
partPercentages.append(isPartedCount * 100 / runs)
|
|
avgDisconnectedCols.append(partCount / runs)
|
|
print(f"Malicious Nodes: {mal}%, Partition Percentage: {partPercentages[-1]}, Avg. Partitions: {avgDisconnectedCols[-1]}")
|
|
|
|
degPartPercentages[deg] = partPercentages
|
|
degAvgDisconnectedCols[deg] = avgDisconnectedCols
|
|
|
|
now = datetime.now()
|
|
execID = now.strftime("%Y-%m-%d_%H-%M-%S_")+str(random.randint(100,999))
|
|
newpath = f"ConnectivityTest/MaliciousNodesVsNetDegree/results/{execID}/"
|
|
if not os.path.exists(newpath): os.makedirs(newpath)
|
|
|
|
conf1 = {
|
|
'x': mals,
|
|
'y': degPartPercentages,
|
|
'label': "NW Deg",
|
|
'xlabel': "Malicious Node (%)",
|
|
'ylabel': "Partition Possibility (%)",
|
|
"title": "Possibility of Network Graph Get Partitioned for Malicious Nodes",
|
|
"plotPath": f"{newpath}prob.png"
|
|
}
|
|
|
|
conf2 = {
|
|
'x': mals,
|
|
'y': degAvgDisconnectedCols,
|
|
'label': "NW Deg",
|
|
'xlabel': "Malicious Node (%)",
|
|
'ylabel': "Avg. Disconnected Columns",
|
|
"title": "Malicious Nodes (%) vs. Disconnected Columns",
|
|
"plotPath": f"{newpath}num.png"
|
|
}
|
|
|
|
plotData(conf1)
|
|
plotData(conf2)
|
|
|
|
|
|
# Configuration
|
|
runs = 10
|
|
degs = range(6, 9, 2)
|
|
mals = range(5, 100, 5)
|
|
numberOfColumns = 128
|
|
custody = 4
|
|
numberOfNodes = 5000
|
|
numberOfValidators = int(numberOfNodes * 2.4) # (0.8 * 1 + 0.2 * 8 = 2.4)
|
|
|
|
if __name__ == "__main__":
|
|
study() |