mirror of
https://github.com/logos-storage/das-research.git
synced 2026-01-02 13:13:09 +00:00
Test Graph Connectivity MaliciousNodes vs NetDegree & MaliciouNodes vs NoOfNodes
This commit is contained in:
parent
1303229026
commit
71948db5ad
1
.gitignore
vendored
1
.gitignore
vendored
@ -5,3 +5,4 @@ myenv*/
|
||||
doc/_build
|
||||
!results/plots.py
|
||||
Frontend/
|
||||
ConnectivityTest/*/results/*
|
||||
119
ConnectivityTest/MaliciousNodesVsNetDegree/prog.py
Normal file
119
ConnectivityTest/MaliciousNodesVsNetDegree/prog.py
Normal file
@ -0,0 +1,119 @@
|
||||
import networkx as nx
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
from datetime import datetime
|
||||
import os
|
||||
|
||||
|
||||
def plotData(conf):
|
||||
for key, value in conf['y'].items():
|
||||
plt.plot(conf['x'], value, label=f"{conf['label']}: {key}")
|
||||
plt.xlabel(conf['xlabel'])
|
||||
plt.ylabel(conf['ylabel'])
|
||||
plt.title(conf['title'])
|
||||
plt.legend()
|
||||
plt.savefig(conf['plotPath'])
|
||||
plt.clf()
|
||||
|
||||
def isGConnected(deg, nodes, mal):
|
||||
G = nx.random_regular_graph(deg, nodes)
|
||||
malNodes = random.sample(list(G.nodes()), k=mal * nodes // 100)
|
||||
for mn in malNodes:
|
||||
G.remove_node(mn)
|
||||
|
||||
return nx.is_connected(G)
|
||||
|
||||
def getValidatorCountPerColumn(numberOfCols, numOfValidators, chiC):
|
||||
validatorCountPerColumn = dict()
|
||||
for _ in range(numOfValidators):
|
||||
colsSelected = random.sample(list(range(1, numberOfCols + 1)), chiC)
|
||||
for col in colsSelected:
|
||||
if col in validatorCountPerColumn.keys():
|
||||
validatorCountPerColumn[col] += 1
|
||||
else:
|
||||
validatorCountPerColumn[col] = 0
|
||||
|
||||
return validatorCountPerColumn
|
||||
|
||||
def runOnce(run_i, runs, deg, validatorCountPerCol, malNodesPercentage):
|
||||
print(f"Running: {run_i + 1} / {runs}")
|
||||
|
||||
isParted = False
|
||||
partCount = 0
|
||||
isPartedCount = 0
|
||||
for col in validatorCountPerCol.keys():
|
||||
nodes = validatorCountPerCol[col]
|
||||
if not isGConnected(deg, nodes, malNodesPercentage):
|
||||
if not isParted: isParted = True
|
||||
partCount += 1
|
||||
|
||||
if isParted: isPartedCount += 1
|
||||
sys.stdout.write("\033[F")
|
||||
|
||||
return isPartedCount, partCount
|
||||
|
||||
def study():
|
||||
degPartPercentages = dict()
|
||||
degAvgDisconnectedCols = dict()
|
||||
|
||||
for deg in degs:
|
||||
print(f"\nNetwork Degree: {deg}")
|
||||
|
||||
partPercentages = list()
|
||||
avgDisconnectedCols = list()
|
||||
for mal in mals:
|
||||
isPartedCount = partCount = 0
|
||||
validatorCountPerColumn = getValidatorCountPerColumn(numberOfColumns, numberOfValidators, custody)
|
||||
for _run in range(runs):
|
||||
_isPartedCount, _partCount = runOnce(_run, runs, deg, validatorCountPerColumn, mal)
|
||||
isPartedCount += _isPartedCount
|
||||
partCount += _partCount
|
||||
|
||||
partPercentages.append(isPartedCount * 100 / runs)
|
||||
avgDisconnectedCols.append(partCount / runs)
|
||||
print(f"Malicious Nodes: {mal}%, Partition Percentage: {partPercentages[-1]}, Avg. Partitions: {avgDisconnectedCols[-1]}")
|
||||
|
||||
degPartPercentages[deg] = partPercentages
|
||||
degAvgDisconnectedCols[deg] = avgDisconnectedCols
|
||||
|
||||
now = datetime.now()
|
||||
execID = now.strftime("%Y-%m-%d_%H-%M-%S_")+str(random.randint(100,999))
|
||||
newpath = f"ConnectivityTest/MaliciousNodesVsNetDegree/results/{execID}/"
|
||||
if not os.path.exists(newpath): os.makedirs(newpath)
|
||||
|
||||
conf1 = {
|
||||
'x': mals,
|
||||
'y': degPartPercentages,
|
||||
'label': "NW Deg",
|
||||
'xlabel': "Malicious Node (%)",
|
||||
'ylabel': "Partition Possibility (%)",
|
||||
"title": "Possibility of Network Graph Get Partitioned for Malicious Nodes",
|
||||
"plotPath": f"{newpath}prob.png"
|
||||
}
|
||||
|
||||
conf2 = {
|
||||
'x': mals,
|
||||
'y': degAvgDisconnectedCols,
|
||||
'label': "NW Deg",
|
||||
'xlabel': "Malicious Node (%)",
|
||||
'ylabel': "Avg. Disconnected Columns",
|
||||
"title": "Malicious Nodes (%) vs. Disconnected Columns",
|
||||
"plotPath": f"{newpath}num.png"
|
||||
}
|
||||
|
||||
plotData(conf1)
|
||||
plotData(conf2)
|
||||
|
||||
|
||||
# Configuration
|
||||
runs = 10
|
||||
degs = range(6, 9, 2)
|
||||
mals = range(5, 100, 5)
|
||||
numberOfColumns = 128
|
||||
custody = 4
|
||||
numberOfNodes = 5000
|
||||
numberOfValidators = int(numberOfNodes * 2.4) # (0.8 * 1 + 0.2 * 8 = 2.4)
|
||||
|
||||
if __name__ == "__main__":
|
||||
study()
|
||||
120
ConnectivityTest/MaliciousNodesVsNumberOfNodes/prog.py
Normal file
120
ConnectivityTest/MaliciousNodesVsNumberOfNodes/prog.py
Normal file
@ -0,0 +1,120 @@
|
||||
import networkx as nx
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
import os
|
||||
|
||||
|
||||
def plotData(conf):
|
||||
for key, value in conf['y'].items():
|
||||
plt.plot(conf['x'], value, label=f"{conf['label']}: {key}")
|
||||
plt.xlabel(conf['xlabel'])
|
||||
plt.ylabel(conf['ylabel'])
|
||||
plt.title(conf['title'])
|
||||
plt.legend()
|
||||
plt.savefig(conf['plotPath'])
|
||||
plt.clf()
|
||||
|
||||
def isGConnected(deg, nodes, mal):
|
||||
G = nx.random_regular_graph(deg, nodes)
|
||||
malNodes = random.sample(list(G.nodes()), k=mal * nodes // 100)
|
||||
for mn in malNodes:
|
||||
G.remove_node(mn)
|
||||
|
||||
return nx.is_connected(G)
|
||||
|
||||
def getValidatorCountPerColumn(numberOfCols, numOfValidators, chiC):
|
||||
validatorCountPerColumn = dict()
|
||||
for _ in range(numOfValidators):
|
||||
colsSelected = random.sample(list(range(1, numberOfCols + 1)), chiC)
|
||||
for col in colsSelected:
|
||||
if col in validatorCountPerColumn.keys():
|
||||
validatorCountPerColumn[col] += 1
|
||||
else:
|
||||
validatorCountPerColumn[col] = 0
|
||||
|
||||
return validatorCountPerColumn
|
||||
|
||||
def runOnce(run_i, runs, deg, validatorCountPerCol, malNodesPercentage):
|
||||
print(f"Running: {run_i + 1} / {runs}")
|
||||
|
||||
isParted = False
|
||||
partCount = 0
|
||||
isPartedCount = 0
|
||||
for col in validatorCountPerCol.keys():
|
||||
nodes = validatorCountPerCol[col]
|
||||
if not isGConnected(deg, nodes, malNodesPercentage):
|
||||
if not isParted: isParted = True
|
||||
partCount += 1
|
||||
|
||||
if isParted: isPartedCount += 1
|
||||
sys.stdout.write("\033[F")
|
||||
|
||||
return isPartedCount, partCount
|
||||
|
||||
def study():
|
||||
nnPartPercentages = dict()
|
||||
nnAvgDisconnectedCols = dict()
|
||||
|
||||
for nn, nv in zip(numberOfNodes, numberOfValidators):
|
||||
print(f"\nNumber of Nodes: {nn}")
|
||||
|
||||
partPercentages = list()
|
||||
avgDisconnectedCols = list()
|
||||
for mal in mals:
|
||||
isPartedCount = partCount = 0
|
||||
validatorCountPerColumn = getValidatorCountPerColumn(numberOfColumns, nv, custody)
|
||||
for _run in range(runs):
|
||||
_isPartedCount, _partCount = runOnce(_run, runs, deg, validatorCountPerColumn, mal)
|
||||
isPartedCount += _isPartedCount
|
||||
partCount += _partCount
|
||||
|
||||
partPercentages.append(isPartedCount * 100 / runs)
|
||||
avgDisconnectedCols.append(partCount / runs)
|
||||
print(f"Malicious Nodes: {mal}%, Partition Percentage: {partPercentages[-1]}, Avg. Partitions: {avgDisconnectedCols[-1]}")
|
||||
|
||||
nnPartPercentages[nn] = partPercentages
|
||||
nnAvgDisconnectedCols[nn] = avgDisconnectedCols
|
||||
|
||||
now = datetime.now()
|
||||
execID = now.strftime("%Y-%m-%d_%H-%M-%S_")+str(random.randint(100,999))
|
||||
newpath = f"ConnectivityTest/MaliciousNodesVsNumberOfNodes/results/{execID}/"
|
||||
if not os.path.exists(newpath): os.makedirs(newpath)
|
||||
|
||||
conf1 = {
|
||||
'x': mals,
|
||||
'y': nnPartPercentages,
|
||||
'label': "Nodes",
|
||||
'xlabel': "Malicious Node (%)",
|
||||
'ylabel': "Partition Possibility (%)",
|
||||
"title": "Possibility of Network Graph Get Partitioned for Malicious Nodes",
|
||||
"plotPath": f"{newpath}prob.png"
|
||||
}
|
||||
|
||||
conf2 = {
|
||||
'x': mals,
|
||||
'y': nnAvgDisconnectedCols,
|
||||
'label': "Nodes",
|
||||
'xlabel': "Malicious Node (%)",
|
||||
'ylabel': "Avg. Disconnected Columns",
|
||||
"title": "Malicious Nodes (%) vs. Disconnected Columns",
|
||||
"plotPath": f"{newpath}num.png"
|
||||
}
|
||||
|
||||
plotData(conf1)
|
||||
plotData(conf2)
|
||||
|
||||
|
||||
# Configuration
|
||||
runs = 10
|
||||
deg = 8
|
||||
mals = range(5, 100, 5)
|
||||
numberOfColumns = 128
|
||||
custody = 4
|
||||
numberOfNodes = [int(_) for _ in (np.logspace(2, 3, 3, endpoint=True, base=10) * 5)]
|
||||
numberOfValidators = [int(nn * 2.4) for nn in numberOfNodes] # (0.8 * 1 + 0.2 * 8 = 2.4)
|
||||
|
||||
if __name__ == "__main__":
|
||||
study()
|
||||
Loading…
x
Reference in New Issue
Block a user