32 KiB
Table of Contents
Mathematical Specification of Staking Protocol
[!IMPORTANT] All values in this document are expressed as unsigned integers.
Summary
Constants
Symbol | Source | Value | Unit | Description |
---|---|---|---|---|
SCALE_{FACTOR} |
\pu{1 \times 10^{18}} |
(1) | Scaling factor to maintain precision in calculations. | |
M_{MAX} |
\pu{4 \mathrm{(1)}} |
(1) | Maximum multiplier of annual percentage yield. | |
\mathtt{APY} |
100 | percent | Annual percentage yield for multiplier points. | |
\mathsf{MPY} |
M_{MAX} \times \mathtt{APY} |
400 | percent | Multiplier points accrued maximum percentage yield. |
\mathsf{MPY}^\mathit{abs} |
100 + (2 \times M_{\text{MAX}} \times \mathtt{APY}) |
900 | percent | Multiplier points absolute maximum percentage yield. |
T_{RATE} |
$ 7 \times T_{DAY} | 604800 | seconds | The accrue rate period of time over which multiplier points are calculated. |
T_{DAY} |
86400 | seconds | One day. | |
T_{YEAR} |
\lfloor365.242190 \times T_{DAY}\rfloor |
31556925 | seconds | One (mean) tropical year. |
A_{MIN} |
\lceil\tfrac{T_{YEAR} \times 100}{T_{RATE} \times \mathtt{APY}}\rceil |
2629744 | tokens per period | Minimal value to generate 1 multiplier point in the accrue rate period (T_{RATE} ). (A_{MIN} \propto T_{RATE} ) |
A_{MAX} |
\frac{2^{256} - 1}{\text{APY} \times T_{\text{RATE}}} |
tokens per period | Maximum value to not overflow unsigned integer of 256 bits. | |
T_{MIN} |
90 \times T_{DAY} |
7776000 | seconds | Minimum lockup period, equivalent to 90 days. |
T_{MAX} |
M_{MAX} \times T_{YEAR} |
126227700 | seconds | Maximum of lockup period. |
Variables
System and User Parameters
\Delta a\rightarrow
Amount Difference
Difference in amount, can be either reduced or increased depending on context.
\Delta t\rightarrow
Time Difference of Last Accrual
The time difference defined as:
\Delta t = t_{now} - t_{last}, \quad \text{where} \Delta t > T_{RATE}
t_{lock}\rightarrow
Time Lock Duration
A user-defined duration for which a_{bal}
remains locked.
t_{now}\rightarrow
Time Now
The current timestamp seconds since the Unix epoch (January 1, 1970).
t_{lock, \Delta}\rightarrow
Time Lock Remaining Duration
Seconds a_{bal}
remains locked, expressed as:
\begin{align} &t_{lock, \Delta} = max(t_{lock,end},t_{now}) - t_{now} \\
\text{ where: }\quad & t_{lock, \Delta} = 0\text{ or }T_{MIN} \le t_{lock, \Delta} \le (M_{MAX} \times T_{YEAR})\end{align}
State Related
a_{bal}\rightarrow
Amount of Balance
Amount of tokens in balance, where a_{bal} \ge A_{MIN}
.
t_{lock,end}\rightarrow
Time Lock End
Timestamp marking the end of the lock period, its state can be defined as:
t_{lock,end} = \max(t_{now}, t_{lock,end}) + t_{lock}
The value of t_{lock,end}
can be updated only within the functions:
\mathcal{f}^{stake}(\mathbb{Account}, \Delta a, \Delta t_{lock})
;\mathcal{f}^{lock}(\mathbb{Account}, \Delta t_{lock})
;
t_{last}\rightarrow
Time of Accrual
Timestamp of the last accrued time, its state can be defined as:
t_{last} = t_{now}
The value of t_{last}
is updated by all functions that change state:
f^{accrue}(\mathbb{Account}, a_{bal},\Delta t)
,\mathcal{f}^{stake}(\mathbb{Account}, \Delta a, \Delta t_{lock})
;\mathcal{f}^{lock}(\mathbb{Account}, \Delta t_{lock})
;\mathcal{f}^{unstake}(\mathbb{Account}, \Delta a)
;
mp_\mathcal{M}\rightarrow
Maximum Multiplier Points
Maximum value that mp_\Sigma
can reach.
Relates as mp_\mathcal{M} \propto a_{bal} \cdot (t_{lock} + \mathsf{MPY})
.
Altered by functions that change the account state:
\mathcal{f}^{stake}(\mathbb{Account}, \Delta a, \Delta t_{lock})
;\mathcal{f}^{lock}(\mathbb{Account}, \Delta t_{lock})
;\mathcal{f}^{unstake}(\mathbb{Account}, \Delta a)
.
It's state can be expressed as the following state changes:
Increase in Balance and Lock
\begin{aligned}
mp_\mathcal{M} &= mp_\mathcal{M} + mp_\mathcal{A}(\Delta a, M_{MAX} \times T_{YEAR}) \\
&\quad + mp_\mathcal{B}(\Delta a, t_{lock,\Delta} + t_{lock}) \\
&\quad + mp_\mathcal{B}(a_{bal}, t_{lock}) \\
&\quad + mp_\mathcal{I}(\Delta a)
\end{aligned}
Increase in Balance only
\begin{aligned}
mp_\mathcal{M} &= mp_\mathcal{M} + mp_\mathcal{A}(\Delta a, M_{MAX} \times T_{YEAR}) \\
&\quad + mp_\mathcal{B}(\Delta a, t_{lock,\Delta}) \\
&\quad + mp_\mathcal{I}(\Delta a)
\end{aligned}
Increase in Lock only
mp_\mathcal{M} = mp_\mathcal{M} + mp_\mathcal{B}(a_{bal}, t_{lock})
Decrease in Balance
mp_\mathcal{M} = mp_\mathcal{M} - mp_\mathcal{R}(mp_\mathcal{M}, a_{bal}, \Delta a)
mp_{\Sigma}\rightarrow
Total Multiplier Points
Altered by all functions that change state:
- [[#
mathcal{f} {stake}( mathbb{Account}, Delta a, t_{lock}) longrightarrow
Stake Amount With Lock]] - [[#
mathcal{f} {lock}( mathbb{Account}, t_{lock}) longrightarrow
Increase Lock]]; - [[#
mathcal{f} {unstake}( mathbb{Account}, Delta a) longrightarrow
Unstake Amount Unlocked]]; - [[#
mathcal{f} {accrue}( mathbb{Account}) longrightarrow
Accrue Multiplier Points]].
The state can be expressed as the following state changes:
For every T_{RATE}
mp_{\Sigma} = min(\mathcal{f}mp_\mathcal{A}(a_{bal},\Delta t) ,mp_\mathcal{M} - mp_\Sigma)
Increase in Balance and Lock
\begin{aligned}
mp_{\Sigma} &= mp_{\Sigma} + mp_\mathcal{B}(\Delta a, t_{lock, \Delta} + t_{lock}) \\
&\quad + mp_\mathcal{B}(a_{bal}, t_{lock}) \\
&\quad + mp_\mathcal{I}(\Delta a)
\end{aligned}
Increase in Balance only
mp_{\Sigma} = mp_{\Sigma} + mp_\mathcal{B}(\Delta a, t_{lock, \Delta}) + mp_\mathcal{I}(\Delta a)
Increase in Lock only
mp_{\Sigma} = mp_{\Sigma} + mp_\mathcal{B}(a_{bal}, t_{lock})
Decrease in Balance
mp_{\Sigma} = mp_{\Sigma} - mp_\mathcal{R}(mp_{\Sigma}, a_{bal}, \Delta a)
\mathbb{Epoch}\rightarrow
Epoch Storage Schema
Defined as following:
\begin{gather}
\mathbb{Epoch} \\
\overbrace{
\begin{align}
R_{pending} & : \text{reward pending}, \\
S_\Sigma & : \text{total supply}, \\
mp_\mathcal{p} & : \text{potential MP}
\end{align}
}
\end{gather}
\mathbb{Account}\rightarrow
Account Storage Schema
Defined as following:
\begin{gather}
\mathbb{Account} \\
\overbrace{
\begin{align}
a_{bal} & : \text{balance}, \\
t_{lock,end} & : \text{lock end}, \\
t_{last} & : \text{last accrual}, \\
mp_\Sigma & : \text{total MPs}, \\
mp_\mathcal{M} & : \text{maximum MPs},\\
E_\mathcal{current} & : \text{current epoch},\\
E_\mathcal{target} & : \text{target epoch}
\end{align}
}
\end{gather}
\mathbb{System}\rightarrow
System Storage Schema
Defined as following:
\begin{gather}
\mathbb{System} \\
\overbrace{
\begin{align}
\mathbb{Epoch}\mathrm{[]} & : \text{epochs}, \\
\mathbb{Account}\mathrm{[]} & : \text{accounts}, \\
a_{bal} & : \text{total staked}, \\
mp_\Sigma & : \text{MP supply}, \\
mp_\mathcal{M} & : \text{MP supply max} \\
mp_\mathcal{p} & : \text{potential MP} \\
mp_\mathcal{rate} & : \text{total MP rate} \\
mp_\mathcal{expired} & : \text{current expired mp} \\
E_\mathcal{target} (E_{num} \rightarrow mp) & : \text{epochs expired MP map}
\end{align}
}
\end{gather}
Pure Mathematical Functions
[!NOTE] This function definitions represent direct mathematical input -> output methods, which don't change state.
\mathcal{f}{mp_\mathcal{I}}(\Delta a) \longrightarrow
Initial Multiplier Points
Calculates the initial multiplier points (MPs) based on the balance change \Delta a
. The result is equal to the
amount of balance added.
\boxed{
\begin{equation}
\mathcal{f}{mp_\mathcal{I}}(\Delta a) = \Delta a
\end{equation}
}
Where
\Delta a
: Represents the change in balance.
\mathcal{f}{mp_\mathcal{A}}(a_{bal}, \Delta t) \longrightarrow
Accrue Multiplier Points
Calculates the accrued multiplier points (MPs) over a time period \Delta t
, based on the account balance
a_{bal}
and the annual percentage yield \mathtt{APY}
.
\boxed{
\begin{equation}
\mathcal{f}mp_\mathcal{A}(a_{bal}, \Delta t) = \dfrac{a_{bal} \times \Delta t \times \mathtt{APY}}{100 \times T_{YEAR}}
\end{equation}
}
Where
a_{bal}
: Represents the current account balance.\Delta t
: The time difference or the duration over which the multiplier points are accrued, expressed in the same time units as the year (typically days or months).T_{YEAR}
: A constant representing the duration of a full year, used to normalize the time difference\Delta t
.\mathtt{APY}
: The Annual Percentage Yield (APY) expressed as a percentage, which determines how much the balance grows over a year.
\mathcal{f}{mp_\mathcal{B}}(\Delta a, t_{lock}) \longrightarrow
Bonus Multiplier Points
Calculates the bonus multiplier points (MPs) earned when a balance \Delta a
is locked for a specified duration
t_{lock}
. It is equivalent to the [[# mathcal{f}{mp_ mathcal{A}}(a_{bal}, Delta t) longrightarrow
Accrue Multiplier Points]] but specifically applied in the context of a locked balance, using [[# Delta t rightarrow
Time Difference of Last Accrual|\Delta t
]] as [[#t_{lock} rightarrow
Time Lock Duration|t_{lock}
]].
\begin{aligned}
&\mathcal{f}mp_\mathcal{B}(\Delta a, t_{lock}) = \mathcal{f}mp_\mathcal{A}(\Delta a, t_{lock}) \\
&\boxed{
\begin{equation}
\mathcal{f}mp_\mathcal{B}(\Delta a, t_{lock}) = \dfrac{\Delta a \times t_{lock} \times \mathtt{APY}}{100 \times T_{YEAR}}
\end{equation}
}
\end{aligned}
Where:
\Delta a
: Represents the amount of the balance that is locked.t_{lock}
: The duration for which the balance\Delta a
is locked, measured in units of seconds.T_{YEAR}
: A constant representing the length of a year, used to normalize the lock periodt_{lock}
as a fraction of a full year.\mathtt{APY}
: The Annual Percentage Yield (APY), expressed as a percentage, which indicates the yearly interest rate applied to the locked balance.
\mathcal{f}{mp_\mathcal{R}}(mp, a_{bal}, \Delta a) \longrightarrow
Reduce Multiplier Points
Calculates the reduction in multiplier points (MPs) when a portion of the balance \Delta a
is removed from the
total balance a_{bal}
. The reduction is proportional to the ratio of the removed balance to the total balance,
applied to the current multiplier points mp
.
\boxed{
\begin{equation}
\mathcal{f}{mp_\mathcal{R}}(mp, a_{bal}, \Delta a) = \dfrac{mp \times \Delta a}{ a_{bal}}
\end{equation}
}
Where:
mp
: Represents the current multiplier points.a_{bal}
: The total account balance before the removal of\Delta a
.\Delta a
: The amount of balance being removed or deducted.
State Functions
These function definitions represent methods that modify the state of both \mathbb{System}
and
\mathbb{Account}
. They perform various pure mathematical operations to implement the specified state changes,
affecting either the system as a whole and the individual account states.
\mathcal{f}^{stake}(\mathbb{Account},\Delta a, t_{lock}) \longrightarrow
Stake Amount With Lock
Purpose: Allows a user to stake an amount \Delta a
with an optional lock duration t_{lock}
.
---
title: Stake Storage Access Flowchart
---
flowchart LR
BonusMP{{Bonus MP}}
InitialMP{{Initial MP}}
Balance
LockEnd[Lock End]
TotalMP[Total MPs]
MaxMP[Maximum MPs]
FBonusMP{Calc Bonus MP}
FMaxMP{Calc Max Accrue MP}
M_MAX([MAX MULTIPLIER])
Balance --> InitialMP
Balance --> FMaxMP
M_MAX --> FMaxMP
InitialMP --> TotalMP
InitialMP --> MaxMP
BonusMP --> TotalMP
BonusMP --> MaxMP
FMaxMP --> MaxMP
LockEnd --> FBonusMP
Balance --> FBonusMP
FBonusMP --> BonusMP
Steps
Accrue Existing Multiplier Points (MPs)
Call the [[# mathcal{f} {accrue}( mathbb{Account}) longrightarrow
Accrue Multiplier Points]] function to update MPs and last accrual time.
Calculate the New Remaining Lock Period (\Delta t_{lock}
)
\Delta t_{lock} = max(\mathbb{Account} \cdot t_{lock,end}, t_{now}) + t_{lock} - t_{now}
Verify Constraints
Ensure new balance (a_{bal}
+ \Delta a
) meets the minimum amount (A_{MIN}
):
\mathbb{Account} \cdot a_{bal} + \Delta a > A_{MIN}
Ensure the New Remaining Lock Period (\Delta t_{lock}
) is within Allowed Limits
\Delta t_{lock} = 0 \lor T_{MIN} \le \Delta t_{lock} \le T_{MAX}
Calculate Increased Bonus MPs
For the new amount (\Delta a
) with the New Remaining Lock Period (\Delta t_{lock}
):
\Delta \hat{mp}^\mathcal{B} = \mathcal{f}mp_\mathcal{B}(\Delta a, \Delta t_{lock})
For extending the lock (t_{lock}
) on the existing balance (\mathbb{Account} \cdot a_{bal}
):
\Delta \hat{mp}^\mathcal{B} = \Delta \hat{mp}^\mathcal{B} + \mathcal{f}mp_\mathcal{B}(\mathbb{Account} \cdot a_{bal}, t_{lock})
Calculate Increased Maximum MPs (\Delta mp_\mathcal{M}
)
\Delta mp_\mathcal{M} = \mathcal{f}mp_\mathcal{I}(\Delta a) + \Delta \hat{mp}^\mathcal{B} + \mathcal{f}mp_\mathcal{A}(\Delta a, M_{MAX} \times T_{YEAR})
Calculate Increased Total MPs (\Delta mp_\Sigma
)
\Delta mp_\Sigma = \mathcal{f}mp_\mathcal{I}(\Delta a) + \Delta \hat{mp}^\mathcal{B}
Verify Constraints
Ensure the New Maximum MPs (\mathbb{Account} \cdot mp_\mathcal{M} + \Delta mp_\mathcal{M}
) is within the Absolute Maximum MPs:
\mathbb{Account} \cdot mp_\mathcal{M} + \Delta mp_\mathcal{M} \le \frac{a_{bal} \times \mathsf{MPY}^\mathit{abs}}{100}
Calculate MP Rate:
mp_{\text{rate}} = \frac{\Delta a \times T_{\text{RATE}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
Calculate Fractional
mp_{\text{fractional}} = mp_{\text{rate}} - \frac{\Delta a \times \Delta t_{\text{epoch}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
Total MP Needed to Reach Maximum MP:
mp_{\text{target}}(\Delta a) = \hat{\mathcal{f}}mp_\Sigma^{\text{max}}(\Delta a) + mp_{\text{fractional}}
mp_{\text{target}} = \frac{\Delta a \times \mathsf{MPY}}{100} + mp_{\text{fractional}}
Determine Full and Partial Epochs:
\Delta E_{\text{target,1}} = \left\lfloor \frac{mp_{\text{target}}}{mp_{\text{rate}}} \right\rfloor
\Delta E_{\text{target,2}} = \frac{mp_{\text{target}}}{mp_{\text{rate}}} \mod 1
Update Target Epochs:
E_{\text{target,1}} = E_{\text{current}} + \Delta E_{\text{target,1}}
System Updates:
\mathbb{System}.mp_{\text{rate}} = \mathbb{System}.mp_{\text{rate}} + mp_{\text{rate}}
\mathbb{System}.mp_{\text{expired}} = \mathbb{System}.mp_{\text{expired}} + mp_{\text{fractional}}
Conditionally:
If E_{\text{target,2}} == 1
:
\mathbb{System}.E_{\text{target}}(E_{\text{target,1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target,1}}) + mp_{\text{remainder}}
E_{\text{target,2}} = E_{\text{target,1}} + 1
\mathbb{System}.E_{\text{target}}(E_{\text{target,2}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target,2}}) + mp_{\text{rate}} - mp_{\text{remainder}}
Else:
\mathbb{System}.E_{\text{target}}(E_{\text{target,1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target,1}}) + mp_{\text{rate}}
Update account State
Maximum MPs:
\mathbb{Account} \cdot mp_\mathcal{M} = \mathbb{Account}\cdot mp_\mathcal{M} + \Delta mp_\mathcal{M}
Total MPs:
\mathbb{Account} \cdot mp_\Sigma = \mathbb{Account} \cdot mp_\Sigma + \Delta mp_\Sigma
Balance:
\mathbb{Account} \cdot a_{bal} = \mathbb{Account} \cdot a_{bal} + \Delta a
Lock end time:
\mathbb{Account} \cdot t_{lock,end} = max(\mathbb{Account} \cdot t_{lock,end}, t_{now}) + t_{lock}
Update System State
Maximum MPs:
\mathbb{System} \cdot mp_\mathcal{M} = \mathbb{System} \cdot mp_\mathcal{M} + \Delta mp_\mathcal{M}
Total MPs:
\mathbb{System} \cdot mp_\Sigma = \mathbb{System} \cdot mp_\Sigma + \Delta mp_\Sigma
Total staked amount:
\mathbb{System} \cdot a_{bal} = \mathbb{System} \cdot a_{bal} + \Delta a
\mathcal{f}^{lock}(\mathbb{Account}, t_{lock}) \longrightarrow
Increase Lock
[!NOTE] Equivalent to
\mathcal{f}_{stake}(\mathbb{Account},0, t_{lock})
Purpose: Allows a user to lock the \mathbb{Account} \cdot a_{bal}
with a lock duration t_{lock}
.
---
title: Lock Storage Access Flowchart
---
flowchart LR
BonusMP{{Bonus MP}}
LockEnd[Lock End]
TotalMP[Total MPs]
MaxMP[Maximum MPs]
FBonusMP{Calc Bonus MP}
BonusMP --> TotalMP
BonusMP --> MaxMP
LockEnd --> FBonusMP
Balance --> FBonusMP
FBonusMP --> BonusMP
Steps
Accrue Existing Multiplier Points (MPs)
Call the [[# mathcal{f} {accrue}( mathbb{Account}) longrightarrow
Accrue Multiplier Points]] function to update MPs and last accrual time.
Calculate the New Remaining Lock Period (\Delta t_{lock}
)
\Delta t_{lock} = max(\mathbb{Account} \cdot t_{lock,end}, t_{now}) + t_{lock} - t_{now}
Verify Constraints
Ensure the New Remaining Lock Period (\Delta t_{lock}
) is within allowed limits:
\Delta t_{lock} = 0 \lor T_{MIN} \le \Delta t_{lock} \le T_{MAX}
Calculate Bonus MPs for the Increased Lock Period
\Delta \hat{mp}^\mathcal{B} = mp_\mathcal{B}(\mathbb{Account} \cdot a_{bal}, t_{lock})
Verify Constraints
Ensure the New Maximum MPs (\mathbb{Account} \cdot mp_\mathcal{M} + \Delta \hat{mp}^\mathcal{B}
) is within the Absolute Maximum MPs:
\mathbb{Account} \cdot mp_\mathcal{M} + \Delta \hat{mp}^\mathcal{B} \le \frac{a_{bal} \times \mathsf{MPY}^\mathit{abs}}{100}
Update account State
Maximum MPs:
\mathbb{Account} \cdot mp_\mathcal{M} = \mathbb{Account} \cdot mp_\mathcal{M} + \Delta \hat{mp}^\mathcal{B}
Total MPs:
\mathbb{Account} \cdot mp_\Sigma = \mathbb{Account} \cdot mp_\Sigma + \Delta \hat{mp}^\mathcal{B}
Lock end time:
\mathbb{Account} \cdot t_{lock,end} = max(\mathbb{Account} \cdot t_{lock,end}, t_{now}) + t_{lock}
Update System State
Maximum MPs:
\mathbb{System} \cdot mp_\mathcal{M} = \mathbb{System} \cdot mp_\mathcal{M} + \Delta mp_\mathcal{B}
Total MPs:
\mathbb{System} \cdot mp_\Sigma = \mathbb{System} \cdot mp_\Sigma + \Delta mp_\mathcal{B}
\mathcal{f}^{unstake}(\mathbb{Account}, \Delta a) \longrightarrow
Unstake Amount Unlocked
Purpose: Allows a user to unstake an amount \Delta a
.
---
title: Unstake Storage Access Flowchart
---
flowchart LR
Balance
TotalMP[Total MPs]
MaxMP[Maximum MPs]
FReduceMP{Calc Reduced MP}
TotalMP --> FReduceMP
MaxMP --> FReduceMP
Balance --> FReduceMP
FReduceMP --> Balance
FReduceMP --> TotalMP
FReduceMP --> MaxMP
Steps
Accrue Existing Multiplier Points (MPs)
Call the [[# mathcal{f} {accrue}( mathbb{Account}) longrightarrow
Accrue Multiplier Points]] function to update MPs and last accrual time.
Verify Constraints
Ensure the account is not locked:
\mathbb{Account} \cdot t_{lock,end} < t_{now}
Ensure that account have enough balance:
\mathbb{Account} \cdot a_{bal} > \Delta a
Ensure that new balance (\mathbb{Account} \cdot a_{bal} - \Delta a
) will be zero or more than minimum allowed:
\mathbb{Account} \cdot a_{bal} - \Delta a = 0 \lor \mathbb{Account} \cdot a_{bal} - \Delta a > A_{MIN}
Calculate Reduced Amounts
Maximum MPs:
\Delta mp_\mathcal{M} =\mathcal{f}mp_\mathcal{R}(\mathbb{Account} \cdot mp_\mathcal{M}, \mathbb{Account} \cdot a_{bal}, \Delta a)
Total MPs:
\Delta mp_\Sigma = \mathcal{f}mp_\mathcal{R}(\mathbb{Account} \cdot mp_\Sigma, \mathbb{Account} \cdot a_{bal}, \Delta a)
Step 1: Retrieve and Reduce Old Target and System Values
Using the previous balance a_{\text{bal}}
(before unstaking), retrieve and reduce the current values for target epochs and MPs.
Recalculate Old Target Epochs and Values:
- Calculate the old MP per epoch using the previous balance:
mp_{\text{rate, old}} = \mathcal{f}mp_\mathcal{A}(a_{\text{bal}}, T_{\text{RATE}}) = \frac{a_{\text{bal}} \times T_{\text{RATE}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
- Calculate the old target MP and any fractional MP:
mp_{\text{target, old}} = \frac{a_{\text{bal}} \times \mathsf{MPY}}{100} + mp_{\text{fractional, old}}
where:
mp_{\text{fractional, old}} = mp_{\text{rate, old}} - \frac{a_{\text{bal}} \times \Delta t_{\text{epoch}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
Determine Old Full and Partial Target Epochs:
- Full epochs required with the previous balance:
\Delta E_{\text{target, old, 1}} = \left\lfloor \frac{mp_{\text{target, old}}}{mp_{\text{rate, old}}} \right\rfloor
- Fractional epoch, if applicable:
\Delta E_{\text{target, old, 2}} = \frac{mp_{\text{target, old}}}{mp_{\text{rate, old}}} \mod 1
Retrieve and Reduce System Values:
-
Using the calculated old target epochs, retrieve and decrement the corresponding entries in the system storage for
expired MP
. -
Reduce the old values:
-
If
\Delta E_{\text{target, old, 2}}
is non-zero: -
Reduce both epochs:
\mathbb{System}.E_{\text{target}}(E_{\text{target, old, 1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, old, 1}}) - mp_{\text{remainder, old}}
\mathbb{System}.E_{\text{target}}(E_{\text{target, old, 2}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, old, 2}}) - (mp_{\text{rate, old}} - mp_{\text{remainder, old}})
- Otherwise:
- Reduce only for the main target epoch:
\mathbb{System}.E_{\text{target}}(E_{\text{target, old, 1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, old, 1}}) - mp_{\text{rate, old}}
Reduce System Totals:
- Subtract the old maximum and total MPs:
\mathbb{System} \cdot mp_\mathcal{M} = \mathbb{System} \cdot mp_\mathcal{M} - mp_\mathcal{M, old}
\mathbb{System} \cdot mp_\Sigma = \mathbb{System} \cdot mp_\Sigma - mp_\Sigma^{\text{old}}
Reduce Account MP Totals:
- Update the account's maximum and total MPs:
\mathbb{Account} \cdot mp_\mathcal{M} = \mathbb{Account} \cdot mp_\mathcal{M} - \Delta mp_\mathcal{M}
\mathbb{Account} \cdot mp_\Sigma = \mathbb{Account} \cdot mp_\Sigma - \Delta mp_\Sigma
Step 2: Recalculate New Target Epochs and Add New Values
With the reduced balance a_{\text{bal}} - \Delta a
, recalculate the target epochs and update the system and account accordingly.
Calculate New MP Per Epoch:
mp_{\text{rate, new}} = \mathcal{f}mp_\mathcal{A}(a_{\text{bal}} - \Delta a, T_{\text{RATE}}) = \frac{(a_{\text{bal}} - \Delta a) \times T_{\text{RATE}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
Recalculate New Target MP (Including Fractional MP):
- Calculate the target MP needed to reach maximum MPs with the new balance:
mp_{\text{target, new}} = \frac{(a_{\text{bal}} - \Delta a) \times \mathsf{MPY}}{100} + mp_{\text{fractional, new}}
- Where:
mp_{\text{fractional, new}} = mp_{\text{rate, new}} - \frac{(a_{\text{bal}} - \Delta a) \times \Delta t_{\text{epoch}} \times \mathtt{APY}}{100 \times T_{\text{YEAR}}}
Calculate New Full and Partial Target Epochs:
- Full epochs required with the new balance:
\Delta E_{\text{target, new, 1}} = \left\lfloor \frac{mp_{\text{target, new}}}{mp_{\text{rate, new}}} \right\rfloor
- Fractional epoch, if any:
\Delta E_{\text{target, new, 2}} = \frac{mp_{\text{target, new}}}{mp_{\text{rate, new}}} \mod 1
Update New Target Epochs in System Storage:
- If
\Delta E_{\text{target, new, 2}}
is non-zero: - Update both new target epochs:
\mathbb{System}.E_{\text{target}}(E_{\text{target, new, 1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, new, 1}}) + mp_{\text{remainder, new}}
\mathbb{System}.E_{\text{target}}(E_{\text{target, new, 2}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, new, 2}}) + (mp_{\text{rate, new}} - mp_{\text{remainder, new}})
- Otherwise:
- Update only for the primary target epoch:
\mathbb{System}.E_{\text{target}}(E_{\text{target, new, 1}}) = \mathbb{System}.E_{\text{target}}(E_{\text{target, new, 1}}) + mp_{\text{rate, new}}
Update account State
Maximum MPs:
\mathbb{Account} \cdot mp_\mathcal{M} = \mathbb{Account} \cdot mp_\mathcal{M} - \Delta mp_\mathcal{M}
Total MPs:
\mathbb{Account} \cdot mp_\Sigma = \mathbb{Account} \cdot mp_\Sigma - \Delta mp_\Sigma
Balance:
\mathbb{Account} \cdot a_{bal} = \mathbb{Account} \cdot a_{bal} - \Delta a
Update System State
Maximum MPs:
\mathbb{System} \cdot mp_\mathcal{M} = \mathbb{System} \cdot mp_\mathcal{M} - \Delta mp_\mathcal{M}
Total MPs:
\mathbb{System} \cdot mp_\Sigma = \mathbb{System} \cdot mp_\Sigma - \Delta mp_\Sigma
Total staked amount:
\mathbb{System} \cdot a_{bal} = \mathbb{System} \cdot a_{bal} - \Delta a
\mathcal{f}^{accrue}(\mathbb{Account}) \longrightarrow
Accrue Multiplier Points
Purpose: Accrue multiplier points (MPs) for the account based on the elapsed time since the last accrual.
---
title: Accrue Storage Access Flowchart
---
flowchart LR
AccruedMP{{Accrued MP}}
Balance
LastMint[Last Mint]
TotalMP[Total MPs] --> MAX{max}
MaxMP[Maximum MPs] --> MAX
FAccruedMP{Calc Accrued MP}
NOW((NOW)) --> FAccruedMP
FAccruedMP --> LastMint
LastMint --> FAccruedMP
Balance --> FAccruedMP
FAccruedMP --> AccruedMP
AccruedMP --> MAX
MAX --> TotalMP
Steps
Calculate the time Period since Last Accrual
\Delta t = t_{now} - \mathbb{Account} \cdot t_{last}
Verify Constraints
Ensure the accrual period is greater than the minimum rate period:
\Delta t > T_{RATE}
Calculate Accrued MP for the Accrual Period
\Delta \hat{mp}^\mathcal{A} = min(\mathcal{f}mp_\mathcal{A}(\mathbb{Account} \cdot a_{bal},\Delta t) ,\mathbb{Account} \cdot mp_\mathcal{M} - \mathbb{Account} \cdot mp_\Sigma)
Update account State
Total MPs:
\mathbb{Account} \cdot mp_\Sigma = \mathbb{Account} \cdot mp_\Sigma + \Delta \hat{mp}^\mathcal{A}
Last accrual time:
\mathbb{Account} \cdot t_{last} = t_{now}
Update System State
Total MPs:
\mathbb{System} \cdot mp_\Sigma = \mathbb{System} \cdot mp_\Sigma + \Delta \hat{mp}^\mathcal{A}
Support Functions
Maximum Total Multiplier Points
The maximum total multiplier points that can be generated for a determined amount of balance and lock duration.
\boxed{
\begin{equation}
\hat{\mathcal{f}}mp_{\mathcal{M}}(a_{bal}, t_{\text{lock}}) = a_{bal} + \frac{a_{bal} \times \mathtt{APY} \times \left( T_{\text{MAX}} + t_{\text{lock}} \right)}{100 \times T_{\text{YEAR}}}
\end{equation}
}
Maximum Accrued Multiplier Points
The maximum multiplier points that can be accrued over time for a determined amount of balance.
It's [[# mathcal{f}{mp_ mathcal{A}}(a_{bal}, Delta t) longrightarrow
Accrue Multiplier Points]] using [[# Delta t rightarrow
Time Difference of Last Accrual|\Delta t
]] = M_{MAX} \times T_{YEAR}
\boxed{
\begin{equation}
\hat{\mathcal{f}}mp_{A}^{max}(a_{bal}) = \frac{a_{bal} \times \mathsf{MPY}}{100}
\end{equation}
}
Maximum Absolute Multiplier Points
The absolute maximum multiplier points that some balance could have, which is the sum of the maximum lockup time bonus and the maximum accrued multiplier points.
\boxed{
\begin{equation}
\hat{\mathcal{f}}mp_\mathcal{M}^\mathit{abs}(a_{bal}) = \frac{a_{bal} \times \mathsf{MPY}^\mathit{abs}}{100}
\end{equation}
}
Retrieve Bonus Multiplier Points
Returns the Bonus Multiplier Points from the Maximum Multiplier Points and Balance.
\boxed{
\begin{equation}
\hat{\mathcal{f}}\hat{mp}^\mathcal{B}(mp_\mathcal{M}, a_{bal}) = mp_\mathcal{M} - \left(a_{\text{bal}} + \hat{\mathcal{f}}mp_{A}^{max}(a_{bal}) \right)
\end{equation}
}
Retrieve Accrued Multiplier Points
Returns the accrued multiplier points from Total Multiplier Points, Maximum Multiplier Points and Balance.
\boxed{
\begin{equation}
\hat{\mathcal{f}}\hat{mp}^\mathcal{A}(mp_\Sigma, mp_\mathcal{M}, a_{bal}) = mp_\Sigma + \hat{\mathcal{f}}mp_{A}^{max}(a_{bal}) - mp_\mathcal{M}
\end{equation}
}
Time to Accrue Multiplier Points
Retrieves how much seconds to a certain a_{bal}
would reach a certain mp
\boxed{
\begin{equation}
t_{rem}(a_{bal},mp_{target}) = \frac{mp_{target} \times 100 \times T_{YEAR}}{a_{bal} \times \mathtt{APY}}
\end{equation}
}
Locked Time (t_{lock}
)
[!CAUTION] Use for reference only. If implemented with integers, for
a_{bal} < T_{YEAR}
, due precision loss, the result may be an approximation.
Estimates the time an account set as locked time.
\boxed{
\begin{equation}
\hat{\mathcal{f}}\tilde{t}_{lock}(mp_{\mathcal{M}}, a_{bal}) \approx \left\lceil \frac{(mp_{\mathcal{M}} - a_{bal}) \times 100 \times T_{YEAR}}{a_{bal} \times \mathtt{APY}}\right\rceil - T_{\text{MAX}}
\end{equation}
}
Where:
mp_{\mathcal{M}}
: Maximum multiplier points calculated thea_{bal}
a_{bal}
: Account balance used to calculate themp_{\mathcal{M}}
Remaining Time Lock Available to Increase
[!CAUTION] Use for reference only. If implemented with integers, for
a_{bal} < T_{YEAR}
, due precision loss, the result may be an approximation.
Retrieves how much time lock can be increased for an account.
\boxed{
\begin{equation}
t_{rem}^{lock}(a_{bal},mp_\mathcal{M}) \approx \frac{\left(\hat{\mathcal{f}}mp_\mathcal{M}^\mathit{abs}(a_{bal}) - mp_\mathcal{M}\right)\times T_{YEAR}}{a_{bal}}
\end{equation}
}