76 lines
3.5 KiB
Python
76 lines
3.5 KiB
Python
from typing import List, Sequence
|
|
|
|
from eth2spec.deneb.mainnet import KZGProof as Proof, BLSFieldElement
|
|
from eth2spec.utils import bls
|
|
|
|
from da.kzg_rs.common import G1, BLS_MODULUS, PRIMITIVE_ROOT
|
|
from da.kzg_rs.fft import fft, fft_g1, ifft_g1
|
|
from da.kzg_rs.poly import Polynomial
|
|
from da.kzg_rs.roots import compute_roots_of_unity
|
|
from da.kzg_rs.utils import is_power_of_two
|
|
|
|
|
|
def __toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
|
|
"""
|
|
This part can be precomputed for different global_parameters lengths depending on polynomial degree of powers of two.
|
|
:param global_parameters:
|
|
:param roots_of_unity:
|
|
:param polynomial_degree:
|
|
:return:
|
|
"""
|
|
assert len(global_parameters) == polynomial_degree
|
|
# algorithm only works on powers of 2 for dft computations
|
|
assert is_power_of_two(len(global_parameters))
|
|
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree*2, BLS_MODULUS)
|
|
vector_x_extended = global_parameters + [bls.Z1() for _ in range(polynomial_degree)]
|
|
vector_x_extended_fft = fft_g1(vector_x_extended, roots_of_unity, BLS_MODULUS)
|
|
return vector_x_extended_fft
|
|
|
|
|
|
def __toeplitz2(coefficients: List[BLSFieldElement], extended_vector: Sequence[G1]) -> List[G1]:
|
|
assert is_power_of_two(len(coefficients))
|
|
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(coefficients), BLS_MODULUS)
|
|
toeplitz_coefficients_fft = fft(coefficients, roots_of_unity, BLS_MODULUS)
|
|
return [bls.multiply(v, c) for v, c in zip(extended_vector, toeplitz_coefficients_fft)]
|
|
|
|
|
|
def __toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
|
|
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(h_extended_fft), BLS_MODULUS)
|
|
return ifft_g1(h_extended_fft, roots_of_unity, BLS_MODULUS)[:polynomial_degree]
|
|
|
|
|
|
def fk20_generate_proofs(
|
|
polynomial: Polynomial, global_parameters: List[G1]
|
|
) -> List[Proof]:
|
|
"""
|
|
Generate all proofs for the polynomial points in batch.
|
|
This method uses the fk20 algorthm from https://eprint.iacr.org/2023/033.pdf
|
|
Disclaimer: It only works for polynomial degree of powers of two.
|
|
:param polynomial: polynomial to generate proof for
|
|
:param global_parameters: setup generated parameters
|
|
:return: list of proof for each point in the polynomial
|
|
"""
|
|
polynomial_degree = len(polynomial)
|
|
assert len(global_parameters) >= polynomial_degree
|
|
assert is_power_of_two(len(polynomial))
|
|
|
|
# 1 - Build toeplitz matrix for h values
|
|
# 1.1 y = dft([s^d-1, s^d-2, ..., s, 1, *[0 for _ in len(polynomial)]])
|
|
# 1.2 z = dft([*[0 for _ in len(polynomial)], f1, f2, ..., fd])
|
|
# 1.3 u = y * v * roots_of_unity(len(polynomial)*2)
|
|
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree, BLS_MODULUS)
|
|
global_parameters = list(reversed(global_parameters[:polynomial_degree]))
|
|
extended_vector = __toeplitz1(global_parameters, polynomial_degree)
|
|
# 2 - Build circulant matrix with the polynomial coefficients (reversed N..n, and padded)
|
|
toeplitz_coefficients = [
|
|
*(BLSFieldElement(0) for _ in range(polynomial_degree)),
|
|
*polynomial.coefficients
|
|
]
|
|
h_extended_vector = __toeplitz2(toeplitz_coefficients, extended_vector)
|
|
# 3 - Perform fft and nub the tail half as it is padding
|
|
h_vector = __toeplitz3(h_extended_vector, polynomial_degree)
|
|
# 4 - proof are the dft of the h vector
|
|
proofs = fft_g1(h_vector, roots_of_unity, BLS_MODULUS)
|
|
proofs = [Proof(bls.G1_to_bytes48(proof)) for proof in proofs]
|
|
return proofs
|