nomos-pocs/da/kzg_rs/fk20.py

76 lines
3.5 KiB
Python
Raw Normal View History

from typing import List, Sequence
from eth2spec.deneb.mainnet import KZGProof as Proof, BLSFieldElement
from eth2spec.utils import bls
from da.kzg_rs.common import G1, BLS_MODULUS, PRIMITIVE_ROOT
from da.kzg_rs.fft import fft, fft_g1, ifft_g1
from da.kzg_rs.poly import Polynomial
from da.kzg_rs.roots import compute_roots_of_unity
from da.kzg_rs.utils import is_power_of_two
def __toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
"""
This part can be precomputed for different global_parameters lengths depending on polynomial degree of powers of two.
:param global_parameters:
:param roots_of_unity:
:param polynomial_degree:
:return:
"""
assert len(global_parameters) == polynomial_degree
# algorithm only works on powers of 2 for dft computations
assert is_power_of_two(len(global_parameters))
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree*2, BLS_MODULUS)
vector_x_extended = global_parameters + [bls.Z1() for _ in range(polynomial_degree)]
vector_x_extended_fft = fft_g1(vector_x_extended, roots_of_unity, BLS_MODULUS)
return vector_x_extended_fft
def __toeplitz2(coefficients: List[BLSFieldElement], extended_vector: Sequence[G1]) -> List[G1]:
assert is_power_of_two(len(coefficients))
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(coefficients), BLS_MODULUS)
toeplitz_coefficients_fft = fft(coefficients, roots_of_unity, BLS_MODULUS)
return [bls.multiply(v, c) for v, c in zip(extended_vector, toeplitz_coefficients_fft)]
def __toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(h_extended_fft), BLS_MODULUS)
return ifft_g1(h_extended_fft, roots_of_unity, BLS_MODULUS)[:polynomial_degree]
def fk20_generate_proofs(
polynomial: Polynomial, global_parameters: List[G1]
) -> List[Proof]:
"""
Generate all proofs for the polynomial points in batch.
This method uses the fk20 algorthm from https://eprint.iacr.org/2023/033.pdf
Disclaimer: It only works for polynomial degree of powers of two.
:param polynomial: polynomial to generate proof for
:param global_parameters: setup generated parameters
:return: list of proof for each point in the polynomial
"""
polynomial_degree = len(polynomial)
assert len(global_parameters) >= polynomial_degree
assert is_power_of_two(len(polynomial))
# 1 - Build toeplitz matrix for h values
# 1.1 y = dft([s^d-1, s^d-2, ..., s, 1, *[0 for _ in len(polynomial)]])
# 1.2 z = dft([*[0 for _ in len(polynomial)], f1, f2, ..., fd])
# 1.3 u = y * v * roots_of_unity(len(polynomial)*2)
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree, BLS_MODULUS)
global_parameters = list(reversed(global_parameters[:polynomial_degree]))
extended_vector = __toeplitz1(global_parameters, polynomial_degree)
# 2 - Build circulant matrix with the polynomial coefficients (reversed N..n, and padded)
toeplitz_coefficients = [
*(BLSFieldElement(0) for _ in range(polynomial_degree)),
*polynomial.coefficients
]
h_extended_vector = __toeplitz2(toeplitz_coefficients, extended_vector)
# 3 - Perform fft and nub the tail half as it is padding
h_vector = __toeplitz3(h_extended_vector, polynomial_degree)
# 4 - proof are the dft of the h vector
proofs = fft_g1(h_vector, roots_of_unity, BLS_MODULUS)
proofs = [Proof(bls.G1_to_bytes48(proof)) for proof in proofs]
return proofs