mirror of
https://github.com/logos-blockchain/logos-blockchain-specs.git
synced 2026-01-12 10:03:13 +00:00
304 lines
13 KiB
Python
304 lines
13 KiB
Python
from collections import Counter
|
|
from typing import TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn
|
|
from matplotlib import pyplot as plt
|
|
import scipy.stats as stats
|
|
|
|
from adversary import NodeState
|
|
from config import Config
|
|
from simulation import Simulation
|
|
|
|
if TYPE_CHECKING:
|
|
from node import Node
|
|
|
|
COL_TIME = "Time"
|
|
COL_NODE_ID = "Node ID"
|
|
COL_MSG_CNT = "Message Count"
|
|
COL_SENDER_CNT = "Sender Count"
|
|
COL_NODE_STATE = "Node State"
|
|
COL_HOPS = "Hops"
|
|
COL_EXPECTED = "Expected"
|
|
COL_MSG_SIZE = "Message Size"
|
|
COL_EGRESS = "Egress"
|
|
COL_INGRESS = "Ingress"
|
|
|
|
|
|
class Analysis:
|
|
def __init__(self, sim: Simulation, config: Config):
|
|
self.sim = sim
|
|
self.config = config
|
|
|
|
def run(self):
|
|
message_size_df = self.message_size_distribution()
|
|
self.bandwidth(message_size_df)
|
|
self.messages_emitted_around_interval()
|
|
self.messages_in_node_over_time()
|
|
# self.node_states()
|
|
self.message_hops()
|
|
# self.timing_attack(median_hops)
|
|
|
|
def bandwidth(self, message_size_df: pd.DataFrame):
|
|
dataframes = []
|
|
nonzero_egresses = []
|
|
nonzero_ingresses = []
|
|
for egress_bandwidths, ingress_bandwidths in zip(self.sim.p2p.measurement.egress_bandwidth_per_time,
|
|
self.sim.p2p.measurement.ingress_bandwidth_per_time):
|
|
rows = []
|
|
for node in self.sim.p2p.nodes:
|
|
egress = egress_bandwidths[node] / 1024.0
|
|
ingress = ingress_bandwidths[node] / 1024.0
|
|
rows.append((node.id, egress, ingress))
|
|
if egress > 0:
|
|
nonzero_egresses.append(egress)
|
|
if ingress > 0:
|
|
nonzero_ingresses.append(ingress)
|
|
df = pd.DataFrame(rows, columns=[COL_NODE_ID, COL_EGRESS, COL_INGRESS])
|
|
dataframes.append(df)
|
|
|
|
times = range(len(dataframes))
|
|
df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True)
|
|
df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=[COL_EGRESS, COL_INGRESS])
|
|
plt.figure(figsize=(12, 6))
|
|
for column in df.columns:
|
|
marker = "x" if column[0] == COL_INGRESS else "o"
|
|
plt.plot(df.index, df[column], marker=marker, label=column[0])
|
|
plt.title("Egress/ingress bandwidth of each node over time")
|
|
plt.xlabel(COL_TIME)
|
|
plt.ylabel("Bandwidth (KiB/s)")
|
|
plt.ylim(bottom=0)
|
|
# Customize the legend to show only 'egress' and 'ingress' regardless of node_id
|
|
handles, labels = plt.gca().get_legend_handles_labels()
|
|
by_label = dict(zip(labels, handles))
|
|
plt.legend(by_label.values(), by_label.keys())
|
|
plt.grid(True)
|
|
|
|
# Adding descriptions on the right size of the plot
|
|
egress_series = pd.Series(nonzero_egresses)
|
|
ingress_series = pd.Series(nonzero_ingresses)
|
|
desc = (
|
|
f"message: {message_size_df[COL_MSG_SIZE].mean():.0f} bytes\n"
|
|
f"{self.config.description()}\n\n"
|
|
f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s\n\n"
|
|
f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s"
|
|
)
|
|
plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12)
|
|
plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text
|
|
|
|
plt.show()
|
|
|
|
def message_size_distribution(self) -> pd.DataFrame:
|
|
df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=[COL_MSG_SIZE])
|
|
print(df.describe())
|
|
return df
|
|
|
|
def messages_emitted_around_interval(self):
|
|
# A ground truth that shows how many times each node sent a real message
|
|
truth_df = pd.DataFrame([(node.id, count) for node, count in self.sim.p2p.measurement.original_senders.items()],
|
|
columns=[COL_NODE_ID, COL_MSG_CNT])
|
|
# A result of observing nodes who have sent messages around the promised message interval
|
|
suspected_df = pd.DataFrame(
|
|
[(node.id, self.sim.p2p.adversary.senders_around_interval[node]) for node in
|
|
self.sim.p2p.measurement.original_senders.keys()],
|
|
columns=[COL_NODE_ID, COL_MSG_CNT]
|
|
)
|
|
|
|
width = 0.4
|
|
fig, ax = plt.subplots(figsize=(12, 8))
|
|
ax.bar(truth_df[COL_NODE_ID] - width / 2, truth_df[COL_MSG_CNT], width, label="Ground Truth", color="b")
|
|
ax.bar(truth_df[COL_NODE_ID] + width / 2, suspected_df[COL_MSG_CNT], width, label="Adversary's Inference",
|
|
color="r")
|
|
ax.set_title("Nodes who generated real messages")
|
|
ax.set_xlabel(COL_NODE_ID)
|
|
ax.set_ylabel(COL_MSG_CNT)
|
|
ax.set_xlim(-1, len(truth_df[COL_NODE_ID]))
|
|
ax.legend()
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
def messages_in_node_over_time(self):
|
|
dataframes = []
|
|
for i, io_window in enumerate(self.sim.p2p.adversary.io_windows):
|
|
time = i * self.config.adversary.io_window_size
|
|
df = pd.DataFrame(
|
|
[(time, receiver.id, len(msg_queue), len(senders)) for receiver, (msg_queue, senders) in
|
|
io_window.items()],
|
|
columns=[COL_TIME, COL_NODE_ID, COL_MSG_CNT, COL_SENDER_CNT])
|
|
if not df.empty:
|
|
dataframes.append(df)
|
|
df = pd.concat(dataframes, ignore_index=True)
|
|
|
|
msg_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_MSG_CNT)
|
|
plt.figure(figsize=(12, 6))
|
|
for column in msg_cnt_df.columns:
|
|
plt.plot(msg_cnt_df.index, msg_cnt_df[column], marker=None, label=column)
|
|
plt.title("Messages within each node over time")
|
|
plt.xlabel(COL_TIME)
|
|
plt.ylabel(COL_MSG_CNT)
|
|
plt.ylim(bottom=0)
|
|
plt.grid(True)
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
sender_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_SENDER_CNT)
|
|
plt.figure(figsize=(12, 6))
|
|
for column in sender_cnt_df.columns:
|
|
plt.plot(sender_cnt_df.index, sender_cnt_df[column], marker=None, label=column)
|
|
plt.title("Diversity of senders of messages received by each node over time")
|
|
plt.xlabel(COL_TIME)
|
|
plt.ylabel("# of senders of messages received by each node")
|
|
plt.ylim(bottom=0)
|
|
plt.grid(True)
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
plt.figure(figsize=(12, 6))
|
|
df.boxplot(column=COL_SENDER_CNT, by=COL_TIME, medianprops={"color": "red", "linewidth": 2.5})
|
|
plt.title("Diversity of senders of messages received by each node over time")
|
|
plt.suptitle("")
|
|
plt.xticks([])
|
|
plt.xlabel(COL_TIME)
|
|
plt.ylabel("# of senders of messages received by each node")
|
|
plt.ylim(bottom=0)
|
|
plt.grid(axis="x")
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
def node_states(self):
|
|
rows = []
|
|
for time, node_states in self.sim.p2p.adversary.node_states.items():
|
|
for node, state in node_states.items():
|
|
rows.append((time, node.id, state))
|
|
df = pd.DataFrame(rows, columns=[COL_TIME, COL_NODE_ID, COL_NODE_STATE])
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
seaborn.scatterplot(data=df, x=COL_TIME, y=COL_NODE_ID, hue=COL_NODE_STATE,
|
|
palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"})
|
|
plt.title("Node states over time")
|
|
plt.xlabel(COL_TIME)
|
|
plt.ylabel(COL_NODE_ID)
|
|
plt.legend(title=COL_NODE_STATE)
|
|
plt.show()
|
|
|
|
def message_hops(self) -> int:
|
|
df = pd.DataFrame(self.sim.p2p.measurement.message_hops.values(), columns=[COL_HOPS])
|
|
print(df.describe())
|
|
plt.figure(figsize=(6, 6))
|
|
seaborn.boxplot(data=df, y=COL_HOPS, medianprops={"color": "red", "linewidth": 2.5})
|
|
plt.ylim(bottom=0)
|
|
plt.title("Message hops distribution")
|
|
plt.show()
|
|
return int(df.median().iloc[0])
|
|
|
|
def timing_attack(self, hops_between_layers: int):
|
|
hops_to_observe = hops_between_layers * (self.config.mixnet.num_mix_layers + 1)
|
|
all_results = Counter()
|
|
window = len(self.sim.p2p.adversary.io_windows) - 1
|
|
while window >= 0:
|
|
items = self.sim.p2p.adversary.io_windows[window].items()
|
|
actual_receivers = [receiver for receiver, (_, senders) in items if len(senders) > 0]
|
|
if len(actual_receivers) == 0:
|
|
window -= 1
|
|
continue
|
|
|
|
for receiver in actual_receivers:
|
|
suspected_senders = self.timing_attack_with(receiver, window, hops_to_observe)
|
|
# self.print_nodes_per_hop(suspected_senders, window)
|
|
all_results.update(suspected_senders)
|
|
window -= 1
|
|
|
|
suspected_senders = ({node.id: count for node, count in all_results.items()})
|
|
print(f"suspected nodes count: {len(suspected_senders)}")
|
|
|
|
# Create the bar plot for original sender counts
|
|
original_senders = ({node.id: count for node, count in self.sim.p2p.measurement.original_senders.items()})
|
|
plt.figure(figsize=(12, 8))
|
|
plt.bar(list(original_senders.keys()), list(original_senders.values()))
|
|
plt.xlabel("Node ID")
|
|
plt.ylabel("Counts")
|
|
plt.title("Original Sender Counts")
|
|
plt.xlim(-1, self.config.mixnet.num_nodes)
|
|
plt.show()
|
|
|
|
# Create the bar plot for suspected sender counts
|
|
keys = list(suspected_senders.keys())
|
|
values = list(suspected_senders.values())
|
|
# Create the bar plot
|
|
plt.figure(figsize=(12, 8))
|
|
plt.bar(keys, values)
|
|
plt.xlabel("Node ID")
|
|
plt.ylabel("Counts")
|
|
plt.title("Suspected Sender Counts")
|
|
plt.xlim(-1, self.config.mixnet.num_nodes)
|
|
plt.show()
|
|
|
|
# Create the bar plot for broadcasters
|
|
broadcasters = ({node.id: count for node, count in self.sim.p2p.broadcasters.items()})
|
|
plt.figure(figsize=(12, 8))
|
|
plt.bar(list(broadcasters.keys()), list(broadcasters.values()))
|
|
plt.xlabel("Node ID")
|
|
plt.ylabel("Counts")
|
|
plt.title("Broadcasters")
|
|
plt.xlim(-1, self.config.mixnet.num_nodes)
|
|
plt.show()
|
|
|
|
# Calculate the mean and standard deviation of the counts
|
|
mean = np.mean(values)
|
|
std_dev = np.std(values)
|
|
# Plot the histogram of the values
|
|
plt.figure(figsize=(12, 8))
|
|
plt.hist(values, bins=30, density=True, alpha=0.6, color="g", label="Counts Histogram")
|
|
# Plot the normal distribution curve
|
|
xmin, xmax = plt.xlim()
|
|
x = np.linspace(xmin, xmax, 100)
|
|
p = stats.norm.pdf(x, mean, std_dev)
|
|
plt.plot(x, p, "k", linewidth=2, label="Normal Distribution")
|
|
title = "Fit results: mean = %.2f, std_dev = %.2f" % (mean, std_dev)
|
|
plt.title(title)
|
|
plt.xlabel("Counts")
|
|
plt.ylabel("Density")
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def timing_attack_with(self, receiver: "Node", window: int, remaining_hops: int) -> Counter:
|
|
assert remaining_hops >= 1
|
|
|
|
# Start inspecting senders who sent messages that were arrived in the receiver at the given window
|
|
_, senders = self.sim.p2p.adversary.io_windows[window][receiver]
|
|
|
|
# If the remaining_hops is 1, return the senders as suspected senders
|
|
if remaining_hops == 1:
|
|
return Counter(senders)
|
|
|
|
# A result to be returned after inspecting all senders who sent messages to the receiver
|
|
all_suspected_senders = Counter()
|
|
|
|
# Inspect each sender who sent messages to the receiver
|
|
for sender in senders:
|
|
# A sub-result to be filled when tracking back further from the sender
|
|
suspected_senders = Counter()
|
|
|
|
# Track back to each window where that sender might have received any messages.
|
|
time_range = self.config.mixnet.max_mix_delay + self.config.p2p.max_network_latency - self.config.adversary.io_window_size
|
|
window_range = int(time_range / self.config.adversary.io_window_size)
|
|
for prev_window in range(window - 1, window - 1 - window_range, -1):
|
|
if prev_window < 0:
|
|
break
|
|
suspected_senders.update(self.timing_attack_with(sender, prev_window, remaining_hops - 1))
|
|
|
|
# If there is no suspected sender gathered, we can assume that the sender is the original sender
|
|
# because it means that nobody has sent messages to the sender within the reasonable time window
|
|
if len(suspected_senders) == 0:
|
|
all_suspected_senders.update({sender})
|
|
else:
|
|
all_suspected_senders.update(suspected_senders)
|
|
|
|
return all_suspected_senders
|
|
|
|
@staticmethod
|
|
def print_nodes_per_hop(nodes_per_hop, starting_window: int):
|
|
for hop, nodes in enumerate(nodes_per_hop):
|
|
print(f"hop-{hop} from w-{starting_window}: {len(nodes)} nodes: {sorted([node.id for node in nodes])}")
|