from collections import Counter from typing import TYPE_CHECKING import numpy as np import pandas as pd import seaborn from matplotlib import pyplot as plt import scipy.stats as stats from adversary import NodeState from config import Config from simulation import Simulation if TYPE_CHECKING: from node import Node COL_TIME = "Time" COL_NODE_ID = "Node ID" COL_MSG_CNT = "Message Count" COL_SENDER_CNT = "Sender Count" COL_NODE_STATE = "Node State" COL_HOPS = "Hops" COL_EXPECTED = "Expected" COL_MSG_SIZE = "Message Size" COL_EGRESS = "Egress" COL_INGRESS = "Ingress" class Analysis: def __init__(self, sim: Simulation, config: Config): self.sim = sim self.config = config def run(self): message_size_df = self.message_size_distribution() self.bandwidth(message_size_df) self.messages_emitted_around_interval() self.messages_in_node_over_time() # self.node_states() self.message_hops() # self.timing_attack(median_hops) def bandwidth(self, message_size_df: pd.DataFrame): dataframes = [] nonzero_egresses = [] nonzero_ingresses = [] for egress_bandwidths, ingress_bandwidths in zip(self.sim.p2p.measurement.egress_bandwidth_per_time, self.sim.p2p.measurement.ingress_bandwidth_per_time): rows = [] for node in self.sim.p2p.nodes: egress = egress_bandwidths[node] / 1024.0 ingress = ingress_bandwidths[node] / 1024.0 rows.append((node.id, egress, ingress)) if egress > 0: nonzero_egresses.append(egress) if ingress > 0: nonzero_ingresses.append(ingress) df = pd.DataFrame(rows, columns=[COL_NODE_ID, COL_EGRESS, COL_INGRESS]) dataframes.append(df) times = range(len(dataframes)) df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True) df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=[COL_EGRESS, COL_INGRESS]) plt.figure(figsize=(12, 6)) for column in df.columns: marker = "x" if column[0] == COL_INGRESS else "o" plt.plot(df.index, df[column], marker=marker, label=column[0]) plt.title("Egress/ingress bandwidth of each node over time") plt.xlabel(COL_TIME) plt.ylabel("Bandwidth (KiB/s)") plt.ylim(bottom=0) # Customize the legend to show only 'egress' and 'ingress' regardless of node_id handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys()) plt.grid(True) # Adding descriptions on the right size of the plot egress_series = pd.Series(nonzero_egresses) ingress_series = pd.Series(nonzero_ingresses) desc = ( f"message: {message_size_df[COL_MSG_SIZE].mean():.0f} bytes\n" f"{self.config.description()}\n\n" f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s\n\n" f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s" ) plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12) plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text plt.show() def message_size_distribution(self) -> pd.DataFrame: df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=[COL_MSG_SIZE]) print(df.describe()) return df def messages_emitted_around_interval(self): # A ground truth that shows how many times each node sent a real message truth_df = pd.DataFrame([(node.id, count) for node, count in self.sim.p2p.measurement.original_senders.items()], columns=[COL_NODE_ID, COL_MSG_CNT]) # A result of observing nodes who have sent messages around the promised message interval suspected_df = pd.DataFrame( [(node.id, self.sim.p2p.adversary.senders_around_interval[node]) for node in self.sim.p2p.measurement.original_senders.keys()], columns=[COL_NODE_ID, COL_MSG_CNT] ) width = 0.4 fig, ax = plt.subplots(figsize=(12, 8)) ax.bar(truth_df[COL_NODE_ID] - width / 2, truth_df[COL_MSG_CNT], width, label="Ground Truth", color="b") ax.bar(truth_df[COL_NODE_ID] + width / 2, suspected_df[COL_MSG_CNT], width, label="Adversary's Inference", color="r") ax.set_title("Nodes who generated real messages") ax.set_xlabel(COL_NODE_ID) ax.set_ylabel(COL_MSG_CNT) ax.set_xlim(-1, len(truth_df[COL_NODE_ID])) ax.legend() plt.tight_layout() plt.show() def messages_in_node_over_time(self): dataframes = [] for i, io_window in enumerate(self.sim.p2p.adversary.io_windows): time = i * self.config.adversary.io_window_size df = pd.DataFrame( [(time, receiver.id, len(msg_queue), len(senders)) for receiver, (msg_queue, senders) in io_window.items()], columns=[COL_TIME, COL_NODE_ID, COL_MSG_CNT, COL_SENDER_CNT]) if not df.empty: dataframes.append(df) df = pd.concat(dataframes, ignore_index=True) msg_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_MSG_CNT) plt.figure(figsize=(12, 6)) for column in msg_cnt_df.columns: plt.plot(msg_cnt_df.index, msg_cnt_df[column], marker=None, label=column) plt.title("Messages within each node over time") plt.xlabel(COL_TIME) plt.ylabel(COL_MSG_CNT) plt.ylim(bottom=0) plt.grid(True) plt.tight_layout() plt.show() sender_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_SENDER_CNT) plt.figure(figsize=(12, 6)) for column in sender_cnt_df.columns: plt.plot(sender_cnt_df.index, sender_cnt_df[column], marker=None, label=column) plt.title("Diversity of senders of messages received by each node over time") plt.xlabel(COL_TIME) plt.ylabel("# of senders of messages received by each node") plt.ylim(bottom=0) plt.grid(True) plt.tight_layout() plt.show() plt.figure(figsize=(12, 6)) df.boxplot(column=COL_SENDER_CNT, by=COL_TIME, medianprops={"color": "red", "linewidth": 2.5}) plt.title("Diversity of senders of messages received by each node over time") plt.suptitle("") plt.xticks([]) plt.xlabel(COL_TIME) plt.ylabel("# of senders of messages received by each node") plt.ylim(bottom=0) plt.grid(axis="x") plt.tight_layout() plt.show() def node_states(self): rows = [] for time, node_states in self.sim.p2p.adversary.node_states.items(): for node, state in node_states.items(): rows.append((time, node.id, state)) df = pd.DataFrame(rows, columns=[COL_TIME, COL_NODE_ID, COL_NODE_STATE]) plt.figure(figsize=(10, 6)) seaborn.scatterplot(data=df, x=COL_TIME, y=COL_NODE_ID, hue=COL_NODE_STATE, palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"}) plt.title("Node states over time") plt.xlabel(COL_TIME) plt.ylabel(COL_NODE_ID) plt.legend(title=COL_NODE_STATE) plt.show() def message_hops(self) -> int: df = pd.DataFrame(self.sim.p2p.measurement.message_hops.values(), columns=[COL_HOPS]) print(df.describe()) plt.figure(figsize=(6, 6)) seaborn.boxplot(data=df, y=COL_HOPS, medianprops={"color": "red", "linewidth": 2.5}) plt.ylim(bottom=0) plt.title("Message hops distribution") plt.show() return int(df.median().iloc[0]) def timing_attack(self, hops_between_layers: int): hops_to_observe = hops_between_layers * (self.config.mixnet.num_mix_layers + 1) all_results = Counter() window = len(self.sim.p2p.adversary.io_windows) - 1 while window >= 0: items = self.sim.p2p.adversary.io_windows[window].items() actual_receivers = [receiver for receiver, (_, senders) in items if len(senders) > 0] if len(actual_receivers) == 0: window -= 1 continue for receiver in actual_receivers: suspected_senders = self.timing_attack_with(receiver, window, hops_to_observe) # self.print_nodes_per_hop(suspected_senders, window) all_results.update(suspected_senders) window -= 1 suspected_senders = ({node.id: count for node, count in all_results.items()}) print(f"suspected nodes count: {len(suspected_senders)}") # Create the bar plot for original sender counts original_senders = ({node.id: count for node, count in self.sim.p2p.measurement.original_senders.items()}) plt.figure(figsize=(12, 8)) plt.bar(list(original_senders.keys()), list(original_senders.values())) plt.xlabel("Node ID") plt.ylabel("Counts") plt.title("Original Sender Counts") plt.xlim(-1, self.config.mixnet.num_nodes) plt.show() # Create the bar plot for suspected sender counts keys = list(suspected_senders.keys()) values = list(suspected_senders.values()) # Create the bar plot plt.figure(figsize=(12, 8)) plt.bar(keys, values) plt.xlabel("Node ID") plt.ylabel("Counts") plt.title("Suspected Sender Counts") plt.xlim(-1, self.config.mixnet.num_nodes) plt.show() # Create the bar plot for broadcasters broadcasters = ({node.id: count for node, count in self.sim.p2p.broadcasters.items()}) plt.figure(figsize=(12, 8)) plt.bar(list(broadcasters.keys()), list(broadcasters.values())) plt.xlabel("Node ID") plt.ylabel("Counts") plt.title("Broadcasters") plt.xlim(-1, self.config.mixnet.num_nodes) plt.show() # Calculate the mean and standard deviation of the counts mean = np.mean(values) std_dev = np.std(values) # Plot the histogram of the values plt.figure(figsize=(12, 8)) plt.hist(values, bins=30, density=True, alpha=0.6, color="g", label="Counts Histogram") # Plot the normal distribution curve xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = stats.norm.pdf(x, mean, std_dev) plt.plot(x, p, "k", linewidth=2, label="Normal Distribution") title = "Fit results: mean = %.2f, std_dev = %.2f" % (mean, std_dev) plt.title(title) plt.xlabel("Counts") plt.ylabel("Density") plt.legend() plt.show() def timing_attack_with(self, receiver: "Node", window: int, remaining_hops: int) -> Counter: assert remaining_hops >= 1 # Start inspecting senders who sent messages that were arrived in the receiver at the given window _, senders = self.sim.p2p.adversary.io_windows[window][receiver] # If the remaining_hops is 1, return the senders as suspected senders if remaining_hops == 1: return Counter(senders) # A result to be returned after inspecting all senders who sent messages to the receiver all_suspected_senders = Counter() # Inspect each sender who sent messages to the receiver for sender in senders: # A sub-result to be filled when tracking back further from the sender suspected_senders = Counter() # Track back to each window where that sender might have received any messages. time_range = self.config.mixnet.max_mix_delay + self.config.p2p.max_network_latency - self.config.adversary.io_window_size window_range = int(time_range / self.config.adversary.io_window_size) for prev_window in range(window - 1, window - 1 - window_range, -1): if prev_window < 0: break suspected_senders.update(self.timing_attack_with(sender, prev_window, remaining_hops - 1)) # If there is no suspected sender gathered, we can assume that the sender is the original sender # because it means that nobody has sent messages to the sender within the reasonable time window if len(suspected_senders) == 0: all_suspected_senders.update({sender}) else: all_suspected_senders.update(suspected_senders) return all_suspected_senders @staticmethod def print_nodes_per_hop(nodes_per_hop, starting_window: int): for hop, nodes in enumerate(nodes_per_hop): print(f"hop-{hop} from w-{starting_window}: {len(nodes)} nodes: {sorted([node.id for node in nodes])}")