constantine/tests/test_fp2.nim
2020-02-27 01:20:51 +01:00

265 lines
6.5 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times, random,
# Internals
../constantine/tower_field_extensions/[abelian_groups, fp2_complex],
../constantine/config/[common, curves],
../constantine/arithmetic/bigints_checked,
# Test utilities
./prng
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp2 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)":
test "Fp2 '1' coordinates in canonical domain":
template test(C: static Curve) =
block:
proc testInstance() =
let oneFp2 = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
let oneBig = block:
var O{.noInit.}: typeof(C.Mod.mres)
O.setOne()
O
var r: typeof(C.Mod.mres)
r.redc(oneFp2.c0.mres, C.Mod.mres, C.getNegInvModWord())
check:
bool(r == oneBig)
bool(oneFp2.c1.mres.isZero())
test(BN254)
test(BLS12_381)
test(P256)
test(Secp256k1)
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
block:
var r{.noinit.}: Fp2[C]
r.square(One)
check: bool(r == One)
block:
var r{.noinit.}: Fp2[C]
r.prod(One, One)
check: bool(r == One)
testInstance()
test(BN254)
test(BLS12_381)
test(P256)
test(Secp256k1)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject.} = block:
var Z{.noInit.}: Fp2[C]
Z.setZero()
Z
let One {.inject.} = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp2[C])
var r{.noinit, inject.}: Fp2[C]
body
testInstance()
test(BN254):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254):
r.prod(x, One)
check: bool(r == x)
test(BN254):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
test(P256):
r.prod(x, Zero)
check: bool(r == Zero)
test(P256):
r.prod(Zero, x)
check: bool(r == Zero)
test(P256):
r.prod(x, One)
check: bool(r == x)
test(P256):
r.prod(One, x)
check: bool(r == x)
test(Secp256k1):
r.prod(x, Zero)
check: bool(r == Zero)
test(Secp256k1):
r.prod(Zero, x)
check: bool(r == Zero)
test(Secp256k1):
r.prod(x, One)
check: bool(r == x)
test(Secp256k1):
r.prod(One, x)
check: bool(r == x)
test "𝔽p2 = 𝔽p[𝑖] addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
abelianGroup(BN254)
abelianGroup(BLS12_381)
abelianGroup(Secp256k1)
abelianGroup(P256)
test "𝔽p2 = 𝔽p[𝑖] multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
commutativeRing(BN254)
commutativeRing(BLS12_381)
commutativeRing(Secp256k1)
commutativeRing(P256)
test "𝔽p2 = 𝔽p[𝑖] extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp2[curve]
one.setOne()
var aInv, r{.noInit.}: Fp2[curve]
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
mulInvOne(BN254)
mulInvOne(BLS12_381)
mulInvOne(Secp256k1)
mulInvOne(P256)