constantine/tests/test_fp2.nim

265 lines
6.5 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times, random,
# Internals
../constantine/tower_field_extensions/[abelian_groups, fp2_complex],
../constantine/config/[common, curves],
../constantine/arithmetic/bigints_checked,
# Test utilities
./prng
2020-02-26 19:28:43 +01:00
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp2 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)":
2020-02-26 01:46:11 +01:00
test "Fp2 '1' coordinates in canonical domain":
template test(C: static Curve) =
block:
proc testInstance() =
let oneFp2 = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
let oneBig = block:
var O{.noInit.}: typeof(C.Mod.mres)
O.setOne()
O
var r: typeof(C.Mod.mres)
r.redc(oneFp2.c0.mres, C.Mod.mres, C.getNegInvModWord())
check:
bool(r == oneBig)
bool(oneFp2.c1.mres.isZero())
test(BN254)
test(BLS12_381)
test(P256)
test(Secp256k1)
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
2020-02-26 01:46:11 +01:00
let One = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
block:
var r{.noinit.}: Fp2[C]
r.square(One)
check: bool(r == One)
block:
var r{.noinit.}: Fp2[C]
r.prod(One, One)
check: bool(r == One)
testInstance()
test(BN254)
test(BLS12_381)
test(P256)
test(Secp256k1)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject.} = block:
var Z{.noInit.}: Fp2[C]
Z.setZero()
Z
let One {.inject.} = block:
var O{.noInit.}: Fp2[C]
O.setOne()
O
2020-02-26 19:28:43 +01:00
for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp2[C])
var r{.noinit, inject.}: Fp2[C]
body
testInstance()
test(BN254):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254):
r.prod(x, One)
check: bool(r == x)
test(BN254):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
test(P256):
r.prod(x, Zero)
check: bool(r == Zero)
test(P256):
r.prod(Zero, x)
check: bool(r == Zero)
test(P256):
r.prod(x, One)
check: bool(r == x)
test(P256):
r.prod(One, x)
check: bool(r == x)
test(Secp256k1):
r.prod(x, Zero)
check: bool(r == Zero)
test(Secp256k1):
r.prod(Zero, x)
check: bool(r == Zero)
test(Secp256k1):
r.prod(x, One)
check: bool(r == x)
test(Secp256k1):
r.prod(One, x)
check: bool(r == x)
2020-02-26 19:28:43 +01:00
test "𝔽p2 = 𝔽p[𝑖] addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
abelianGroup(BN254)
abelianGroup(BLS12_381)
abelianGroup(Secp256k1)
abelianGroup(P256)
test "𝔽p2 = 𝔽p[𝑖] multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
commutativeRing(BN254)
commutativeRing(BLS12_381)
commutativeRing(Secp256k1)
commutativeRing(P256)
2020-02-27 01:20:51 +01:00
test "𝔽p2 = 𝔽p[𝑖] extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp2[curve]
one.setOne()
var aInv, r{.noInit.}: Fp2[curve]
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
mulInvOne(BN254)
mulInvOne(BLS12_381)
mulInvOne(Secp256k1)
mulInvOne(P256)