constantine/tests/test_ec_weierstrass_project...

143 lines
4.2 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times, random,
# Internals
../constantine/config/[common, curves],
../constantine/arithmetic,
../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective],
# Test utilities
../helpers/prng
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_ec_weierstrass_projective_g1 xoshiro512** seed: ", seed
# Import: wrap in elliptic curve tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with projective coordinates (X, Y, Z): Y²Z = X³ + aXZ² + bZ³ i.e. X = xZ, Y = yZ":
test "The infinity point is the neutral element w.r.t. to EC addition":
proc test(F: typedesc, randZ: static bool) =
var inf {.noInit.}: ECP_SWei_Proj[F]
inf.setInf()
check: bool inf.isInf()
for _ in 0 ..< Iters:
var r{.noInit.}: ECP_SWei_Proj[F]
when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F])
else:
let P = rng.random(ECP_SWei_Proj[F])
r.sum(P, inf)
check: bool(r == P)
r.sum(inf, P)
check: bool(r == P)
test(Fp[BLS12_381], randZ = false)
test(Fp[BLS12_381], randZ = true)
test "Adding opposites gives an infinity point":
proc test(F: typedesc, randZ: static bool) =
for _ in 0 ..< Iters:
var r{.noInit.}: ECP_SWei_Proj[F]
when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F])
else:
let P = rng.random(ECP_SWei_Proj[F])
var Q = P
Q.neg()
r.sum(P, Q)
check: bool r.isInf()
r.sum(Q, P)
check: bool r.isInf()
test(Fp[BLS12_381], randZ = false)
test(Fp[BLS12_381], randZ = true)
test "EC add is commutative":
proc test(F: typedesc, randZ: static bool) =
for _ in 0 ..< Iters:
var r0{.noInit.}, r1{.noInit.}: ECP_SWei_Proj[F]
when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F])
let Q = rng.random_with_randZ(ECP_SWei_Proj[F])
else:
let P = rng.random(ECP_SWei_Proj[F])
let Q = rng.random(ECP_SWei_Proj[F])
r0.sum(P, Q)
r1.sum(Q, P)
check: bool(r0 == r1)
test(Fp[BLS12_381], randZ = false)
test(Fp[BLS12_381], randZ = true)
test "EC add is associative":
proc test(F: typedesc, randZ: static bool) =
for _ in 0 ..< Iters:
when randZ:
let a = rng.random_with_randZ(ECP_SWei_Proj[F])
let b = rng.random_with_randZ(ECP_SWei_Proj[F])
let c = rng.random_with_randZ(ECP_SWei_Proj[F])
else:
let a = rng.random(ECP_SWei_Proj[F])
let b = rng.random(ECP_SWei_Proj[F])
let c = rng.random(ECP_SWei_Proj[F])
var tmp1{.noInit.}, tmp2{.noInit.}: ECP_SWei_Proj[F]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
test(Fp[BLS12_381], randZ = false)
test(Fp[BLS12_381], randZ = true)