# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library unittest, times, random, # Internals ../constantine/config/[common, curves], ../constantine/arithmetic, ../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective], # Test utilities ../helpers/prng const Iters = 128 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "test_ec_weierstrass_projective_g1 xoshiro512** seed: ", seed # Import: wrap in elliptic curve tests in small procedures # otherwise they will become globals, # and will create binary size issues. # Also due to Nim stack scanning, # having too many elements on the stack (a couple kB) # will significantly slow down testing (100x is possible) suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with projective coordinates (X, Y, Z): Y²Z = X³ + aXZ² + bZ³ i.e. X = xZ, Y = yZ": test "The infinity point is the neutral element w.r.t. to EC addition": proc test(F: typedesc, randZ: static bool) = var inf {.noInit.}: ECP_SWei_Proj[F] inf.setInf() check: bool inf.isInf() for _ in 0 ..< Iters: var r{.noInit.}: ECP_SWei_Proj[F] when randZ: let P = rng.random_with_randZ(ECP_SWei_Proj[F]) else: let P = rng.random(ECP_SWei_Proj[F]) r.sum(P, inf) check: bool(r == P) r.sum(inf, P) check: bool(r == P) test(Fp[BLS12_381], randZ = false) test(Fp[BLS12_381], randZ = true) test "Adding opposites gives an infinity point": proc test(F: typedesc, randZ: static bool) = for _ in 0 ..< Iters: var r{.noInit.}: ECP_SWei_Proj[F] when randZ: let P = rng.random_with_randZ(ECP_SWei_Proj[F]) else: let P = rng.random(ECP_SWei_Proj[F]) var Q = P Q.neg() r.sum(P, Q) check: bool r.isInf() r.sum(Q, P) check: bool r.isInf() test(Fp[BLS12_381], randZ = false) test(Fp[BLS12_381], randZ = true) test "EC add is commutative": proc test(F: typedesc, randZ: static bool) = for _ in 0 ..< Iters: var r0{.noInit.}, r1{.noInit.}: ECP_SWei_Proj[F] when randZ: let P = rng.random_with_randZ(ECP_SWei_Proj[F]) let Q = rng.random_with_randZ(ECP_SWei_Proj[F]) else: let P = rng.random(ECP_SWei_Proj[F]) let Q = rng.random(ECP_SWei_Proj[F]) r0.sum(P, Q) r1.sum(Q, P) check: bool(r0 == r1) test(Fp[BLS12_381], randZ = false) test(Fp[BLS12_381], randZ = true) test "EC add is associative": proc test(F: typedesc, randZ: static bool) = for _ in 0 ..< Iters: when randZ: let a = rng.random_with_randZ(ECP_SWei_Proj[F]) let b = rng.random_with_randZ(ECP_SWei_Proj[F]) let c = rng.random_with_randZ(ECP_SWei_Proj[F]) else: let a = rng.random(ECP_SWei_Proj[F]) let b = rng.random(ECP_SWei_Proj[F]) let c = rng.random(ECP_SWei_Proj[F]) var tmp1{.noInit.}, tmp2{.noInit.}: ECP_SWei_Proj[F] # r0 = (a + b) + c tmp1.sum(a, b) tmp2.sum(tmp1, c) let r0 = tmp2 # r1 = a + (b + c) tmp1.sum(b, c) tmp2.sum(a, tmp1) let r1 = tmp2 # r2 = (a + c) + b tmp1.sum(a, c) tmp2.sum(tmp1, b) let r2 = tmp2 # r3 = a + (c + b) tmp1.sum(c, b) tmp2.sum(a, tmp1) let r3 = tmp2 # r4 = (c + a) + b tmp1.sum(c, a) tmp2.sum(tmp1, b) let r4 = tmp2 # ... check: bool(r0 == r1) bool(r0 == r2) bool(r0 == r3) bool(r0 == r4) test(Fp[BLS12_381], randZ = false) test(Fp[BLS12_381], randZ = true)