constantine/tests/math/t_fp12_exponentiation.nim

220 lines
5.8 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/[tables, unittest, times],
# Internals
../../constantine/platforms/abstractions,
../../constantine/math/arithmetic,
../../constantine/math/extension_fields,
../../constantine/math/config/curves,
../../constantine/math/io/io_extfields,
# Test utilities
../../helpers/prng_unsafe
const
Iters = 2
TestCurves = [
BN254_Snarks,
BLS12_381
]
type
RandomGen = enum
Uniform
HighHammingWeight
Long01Sequence
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_fp12_exponentiation xoshiro512** seed: ", seed
func random_elem(rng: var RngState, F: typedesc, gen: RandomGen): F {.inline, noInit.} =
if gen == Uniform:
result = rng.random_unsafe(F)
elif gen == HighHammingWeight:
result = rng.random_highHammingWeight(F)
else:
result = rng.random_long01Seq(F)
proc test_sameBaseProduct(C: static Curve, gen: RandomGen) =
## xᴬ xᴮ = xᴬ⁺ᴮ - product of power
let x = rng.random_elem(Fp12[C], gen)
var a = rng.random_elem(BigInt[128], gen)
var b = rng.random_elem(BigInt[128], gen)
# div by 2 to ensure their sum doesn't overflow
# 128 bits
a.div2()
b.div2()
var xa = x
xa.powUnsafeExponent(a, window = 3)
var xb = x
xb.powUnsafeExponent(b, window = 3)
var xapb = x
var apb: BigInt[128]
discard apb.sum(a, b)
xapb.powUnsafeExponent(apb, window = 3)
xa *= xb
doAssert: bool(xa == xapb)
proc test_powpow(C: static Curve, gen: RandomGen) =
## (xᴬ)ᴮ = xᴬᴮ - power of power
var x = rng.random_elem(Fp12[C], gen)
var a = rng.random_elem(BigInt[128], gen)
var b = rng.random_elem(BigInt[128], gen)
var ab: BigInt[256]
ab.prod(a, b)
var y = x
x.powUnsafeExponent(a, window = 3)
x.powUnsafeExponent(b, window = 3)
y.powUnsafeExponent(ab, window = 3)
doAssert: bool(x == y)
proc test_powprod(C: static Curve, gen: RandomGen) =
## (xy)ᴬ = xᴬyᴬ - power of product
var x = rng.random_elem(Fp12[C], gen)
var y = rng.random_elem(Fp12[C], gen)
let a = rng.random_elem(BigInt[128], gen)
var xy{.noInit.}: Fp12[C]
xy.prod(x, y)
xy.powUnsafeExponent(a, window=3)
x.powUnsafeExponent(a, window=3)
y.powUnsafeExponent(a, window=3)
x *= y
doAssert: bool(x == xy)
proc test_pow0(C: static Curve, gen: RandomGen) =
## x⁰ = 1
var x = rng.random_elem(Fp12[C], gen)
var a: BigInt[128] # 0-init
x.powUnsafeExponent(a, window=3)
doAssert: bool x.isOne()
proc test_0pow0(C: static Curve, gen: RandomGen) =
## 0⁰ = 1
var x: Fp12[C] # 0-init
var a: BigInt[128] # 0-init
x.powUnsafeExponent(a, window=3)
doAssert: bool x.isOne()
proc test_powinv(C: static Curve, gen: RandomGen) =
## xᴬ / xᴮ = xᴬ⁻ᴮ - quotient of power
let x = rng.random_elem(Fp12[C], gen)
var a = rng.random_elem(BigInt[128], gen)
var b = rng.random_elem(BigInt[128], gen)
# div by 2 to ensure their sum doesn't overflow
# 128 bits
a.div2()
b.div2()
# Ensure a > b
cswap(a, b, a < b)
var xa = x
xa.powUnsafeExponent(a, window = 3)
var xb = x
xb.powUnsafeExponent(b, window = 3)
xb.inv()
xa *= xb
var xamb = x
var amb: BigInt[128]
discard amb.diff(a, b)
xamb.powUnsafeExponent(amb, window = 3)
doAssert: bool(xa == xamb)
proc test_invpow(C: static Curve, gen: RandomGen) =
## (x / y)ᴬ = xᴬ / yᴬ - power of quotient
let x = rng.random_elem(Fp12[C], gen)
let y = rng.random_elem(Fp12[C], gen)
var a = rng.random_elem(BigInt[128], gen)
var xa = x
xa.powUnsafeExponent(a, window = 3)
var ya = y
ya.powUnsafeExponent(a, window = 3)
ya.inv()
xa *= ya
var xqya = x
var invy = y
invy.inv()
xqya *= invy
xqya.powUnsafeExponent(a, window = 3)
doAssert: bool(xa == xqya)
suite "Exponentiation in 𝔽p12" & " [" & $WordBitWidth & "-bit words]":
staticFor(curve, TestCurves):
test "xᴬ xᴮ = xᴬ⁺ᴮ on " & $curve:
test_sameBaseProduct(curve, gen = Uniform)
test_sameBaseProduct(curve, gen = HighHammingWeight)
test_sameBaseProduct(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "(xᴬ)ᴮ = xᴬᴮ on " & $curve:
test_powpow(curve, gen = Uniform)
test_powpow(curve, gen = HighHammingWeight)
test_powpow(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "(xy)ᴬ = xᴬyᴬ on " & $curve:
test_powprod(curve, gen = Uniform)
test_powprod(curve, gen = HighHammingWeight)
test_powprod(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "x⁰ = 1 on " & $curve:
test_pow0(curve, gen = Uniform)
test_pow0(curve, gen = HighHammingWeight)
test_pow0(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "0⁰ = 1 on " & $curve:
test_0pow0(curve, gen = Uniform)
test_0pow0(curve, gen = HighHammingWeight)
test_0pow0(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "xᴬ / xᴮ = xᴬ⁻ᴮ on " & $curve:
test_powinv(curve, gen = Uniform)
test_powinv(curve, gen = HighHammingWeight)
test_powinv(curve, gen = Long01Sequence)
staticFor(curve, TestCurves):
test "(x / y)ᴬ = xᴬ / yᴬ on " & $curve:
test_invpow(curve, gen = Uniform)
test_invpow(curve, gen = HighHammingWeight)
test_invpow(curve, gen = Long01Sequence)