Double-precision cubic towering + pairing (#158)
* Double-precision cubic towering 5% perf+ * Lazy Cubic squaring, yet another 3% boost. * Implement lazy reduced inverse (but inclusive perf boost) * Double precision sparse multiplication for D-Twist ~ 2% for BN254 Nogami and Snarks curves * Implement lazy sparse mul for M-twist * Try to introduce more laziness but need bound proofs
This commit is contained in:
parent
0e02524225
commit
e7296a78a8
|
@ -131,30 +131,61 @@ func mul_sparse_by_line_xyz000*[C: static Curve](
|
|||
# = a0 b0 + a2 b0 - v0 + v1
|
||||
# = a2 b0 + v1
|
||||
|
||||
var b0 {.noInit.}, v0{.noInit.}, v1{.noInit.}, t{.noInit.}: Fp4[C]
|
||||
when false:
|
||||
var b0 {.noInit.}, v0{.noInit.}, v1{.noInit.}, t{.noInit.}: Fp4[C]
|
||||
|
||||
b0.c0 = l.x
|
||||
b0.c1 = l.y
|
||||
b0.c0 = l.x
|
||||
b0.c1 = l.y
|
||||
|
||||
v0.prod(f.c0, b0)
|
||||
v1.mul_sparse_by_y0(f.c1, l.z)
|
||||
v0.prod(f.c0, b0)
|
||||
v1.mul_sparse_by_x0(f.c1, l.z)
|
||||
|
||||
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
|
||||
f.c1 += f.c0 # r1 = a0 + a1
|
||||
t = b0
|
||||
t.c0 += l.z # t = b0 + b1
|
||||
f.c1 *= t # r2 = (a0 + a1)(b0 + b1)
|
||||
f.c1 -= v0
|
||||
f.c1 -= v1 # r2 = (a0 + a1)(b0 + b1) - v0 - v1
|
||||
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
|
||||
f.c1 += f.c0 # r1 = a0 + a1
|
||||
t = b0
|
||||
t.c0 += l.z # t = b0 + b1
|
||||
f.c1 *= t # r2 = (a0 + a1)(b0 + b1)
|
||||
f.c1 -= v0
|
||||
f.c1 -= v1 # r2 = (a0 + a1)(b0 + b1) - v0 - v1
|
||||
|
||||
# r0 = ξ a2 b1 + v0
|
||||
f.c0.mul_sparse_by_y0(f.c2, l.z)
|
||||
f.c0 *= SexticNonResidue
|
||||
f.c0 += v0
|
||||
# r0 = ξ a2 b1 + v0
|
||||
f.c0.mul_sparse_by_x0(f.c2, l.z)
|
||||
f.c0 *= SexticNonResidue
|
||||
f.c0 += v0
|
||||
|
||||
# r2 = a2 b0 + v1
|
||||
f.c2 *= b0
|
||||
f.c2 += v1
|
||||
# r2 = a2 b0 + v1
|
||||
f.c2 *= b0
|
||||
f.c2 += v1
|
||||
|
||||
else: # Lazy reduction
|
||||
var V0{.noInit.}, V1{.noInit.}, f2x{.noInit.}: doublePrec(Fp4[C])
|
||||
var t{.noInit.}: Fp2[C]
|
||||
|
||||
V0.prod2x_disjoint(f.c0, l.x, l.y)
|
||||
V1.mul2x_sparse_by_x0(f.c1, l.z)
|
||||
|
||||
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
|
||||
when false: # TODO: what's the condition?
|
||||
f.c1.sumUnr(f.c1, f.c0)
|
||||
t.sumUnr(l.x, l.z) # b0 is (x, y)
|
||||
else:
|
||||
f.c1.sum(f.c1, f.c0)
|
||||
t.sum(l.x, l.z) # b0 is (x, y)
|
||||
f2x.prod2x_disjoint(f.c1, t, l.y) # b1 is (z, 0)
|
||||
f2x.diff2xMod(f2x, V0)
|
||||
f2x.diff2xMod(f2x, V1)
|
||||
f.c1.redc2x(f2x)
|
||||
|
||||
# r0 = ξ a2 b1 + v0
|
||||
f2x.mul2x_sparse_by_x0(f.c2, l.z)
|
||||
f2x.prod2x(f2x, SexticNonResidue)
|
||||
f2x.sum2xMod(f2x, V0)
|
||||
f.c0.redc2x(f2x)
|
||||
|
||||
# r2 = a2 b0 + v1
|
||||
f2x.prod2x_disjoint(f.c2, l.x, l.y)
|
||||
f2x.sum2xMod(f2x, V1)
|
||||
f.c2.redc2x(f2x)
|
||||
|
||||
func mul_sparse_by_line_xy000z*[C: static Curve](
|
||||
f: var Fp12[C], l: Line[Fp2[C]]) =
|
||||
|
@ -182,31 +213,63 @@ func mul_sparse_by_line_xy000z*[C: static Curve](
|
|||
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2 + v1
|
||||
# = (a0 + a2) * (b0 + b2) - v0 - v2
|
||||
|
||||
var b0 {.noInit.}, v0{.noInit.}, v2{.noInit.}, t{.noInit.}: Fp4[C]
|
||||
when false:
|
||||
var b0 {.noInit.}, v0{.noInit.}, v2{.noInit.}, t{.noInit.}: Fp4[C]
|
||||
|
||||
b0.c0 = l.x
|
||||
b0.c1 = l.y
|
||||
b0.c0 = l.x
|
||||
b0.c1 = l.y
|
||||
|
||||
v0.prod(f.c0, b0)
|
||||
v2.mul_sparse_by_0y(f.c2, l.z)
|
||||
v0.prod(f.c0, b0)
|
||||
v2.mul_sparse_by_0y(f.c2, l.z)
|
||||
|
||||
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
|
||||
f.c2 += f.c0 # r2 = a0 + a2
|
||||
t = b0
|
||||
t.c1 += l.z # t = b0 + b2
|
||||
f.c2 *= t # r2 = (a0 + a2)(b0 + b2)
|
||||
f.c2 -= v0
|
||||
f.c2 -= v2 # r2 = (a0 + a2)(b0 + b2) - v0 - v2
|
||||
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
|
||||
f.c2 += f.c0 # r2 = a0 + a2
|
||||
t = b0
|
||||
t.c1 += l.z # t = b0 + b2
|
||||
f.c2 *= t # r2 = (a0 + a2)(b0 + b2)
|
||||
f.c2 -= v0
|
||||
f.c2 -= v2 # r2 = (a0 + a2)(b0 + b2) - v0 - v2
|
||||
|
||||
# r0 = ξ a1 b2 + v0
|
||||
f.c0.mul_sparse_by_0y(f.c1, l.z)
|
||||
f.c0 *= SexticNonResidue
|
||||
f.c0 += v0
|
||||
# r0 = ξ a1 b2 + v0
|
||||
f.c0.mul_sparse_by_0y(f.c1, l.z)
|
||||
f.c0 *= SexticNonResidue
|
||||
f.c0 += v0
|
||||
|
||||
# r1 = a1 b0 + ξ v2
|
||||
f.c1 *= b0
|
||||
v2 *= SexticNonResidue
|
||||
f.c1 += v2
|
||||
# r1 = a1 b0 + ξ v2
|
||||
f.c1 *= b0
|
||||
v2 *= SexticNonResidue
|
||||
f.c1 += v2
|
||||
|
||||
else: # Lazy reduction
|
||||
var V0{.noInit.}, V2{.noInit.}, f2x{.noInit.}: doublePrec(Fp4[C])
|
||||
var t{.noInit.}: Fp2[C]
|
||||
|
||||
V0.prod2x_disjoint(f.c0, l.x, l.y)
|
||||
V2.mul2x_sparse_by_0y(f.c2, l.z)
|
||||
|
||||
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
|
||||
when false: # TODO: what's the condition
|
||||
f.c2.sumUnr(f.c2, f.c0)
|
||||
t.sumUnr(l.y, l.z) # b0 is (x, y)
|
||||
else:
|
||||
f.c2.sum(f.c2, f.c0)
|
||||
t.sum(l.y, l.z) # b0 is (x, y)
|
||||
f2x.prod2x_disjoint(f.c2, l.x, t) # b2 is (0, z)
|
||||
f2x.diff2xMod(f2x, V0)
|
||||
f2x.diff2xMod(f2x, V2)
|
||||
f.c2.redc2x(f2x)
|
||||
|
||||
# r0 = ξ a1 b2 + v0
|
||||
f2x.mul2x_sparse_by_0y(f.c1, l.z)
|
||||
f2x.prod2x(f2x, SexticNonResidue)
|
||||
f2x.sum2xMod(f2x, V0)
|
||||
f.c0.redc2x(f2x)
|
||||
|
||||
# r1 = a1 b0 + ξ v2
|
||||
f2x.prod2x_disjoint(f.c1, l.x, l.y)
|
||||
V2.prod2x(V2, SexticNonResidue)
|
||||
f2x.sum2xMod(f2x, V2)
|
||||
f.c1.redc2x(f2x)
|
||||
|
||||
func mul*[C](f: var Fp12[C], line: Line[Fp2[C]]) {.inline.} =
|
||||
when C.getSexticTwist() == D_Twist:
|
||||
|
|
|
@ -26,10 +26,10 @@ import
|
|||
|
||||
func mul_sparse_by_line_xyz000*[C: static Curve](
|
||||
f: var Fp6[C], l: Line[Fp[C]]) =
|
||||
## Sparse multiplication of an 𝔽p12 element
|
||||
## by a sparse 𝔽p12 element coming from an D-Twist line function.
|
||||
## Sparse multiplication of an 𝔽p6 element
|
||||
## by a sparse 𝔽p6 element coming from an D-Twist line function.
|
||||
## The sparse element is represented by a packed Line type
|
||||
## with coordinates (x,y,z) matching 𝔽p12 coordinates xyz000
|
||||
## with coordinates (x,y,z) matching 𝔽p6 coordinates xyz000
|
||||
|
||||
static:
|
||||
doAssert C.getSexticTwist() == D_Twist
|
||||
|
|
|
@ -239,17 +239,17 @@ func prod*(r: var ExtensionField, a: ExtensionField, b: static int) =
|
|||
# ############################################################
|
||||
|
||||
type
|
||||
QuadraticExt2x[F] = object
|
||||
QuadraticExt2x*[F] = object
|
||||
## Quadratic Extension field for lazy reduced fields
|
||||
coords: array[2, F]
|
||||
coords*: array[2, F]
|
||||
|
||||
CubicExt2x[F] = object
|
||||
CubicExt2x*[F] = object
|
||||
## Cubic Extension field for lazy reduced fields
|
||||
coords: array[3, F]
|
||||
coords*: array[3, F]
|
||||
|
||||
ExtensionField2x[F] = QuadraticExt2x[F] or CubicExt2x[F]
|
||||
ExtensionField2x*[F] = QuadraticExt2x[F] or CubicExt2x[F]
|
||||
|
||||
template doublePrec(T: type ExtensionField): type =
|
||||
template doublePrec*(T: type ExtensionField): type =
|
||||
# For now naive unrolling, recursive template don't match
|
||||
# and I don't want to deal with types in macros
|
||||
when T is QuadraticExt:
|
||||
|
@ -258,40 +258,43 @@ template doublePrec(T: type ExtensionField): type =
|
|||
elif T.F is Fp: # Fp2Dbl
|
||||
QuadraticExt2x[doublePrec(T.F)]
|
||||
elif T is CubicExt:
|
||||
when T.F is QuadraticExt: # Fp6Dbl
|
||||
CubicExt2x[QuadraticExt2x[doublePrec(T.F.F)]]
|
||||
when T.F is QuadraticExt: #
|
||||
when T.F.F is QuadraticExt: # Fp12
|
||||
CubicExt2x[QuadraticExt2x[QuadraticExt2x[doublePrec(T.F.F.F)]]]
|
||||
elif T.F.F is Fp: # Fp6
|
||||
CubicExt2x[QuadraticExt2x[doublePrec(T.F.F)]]
|
||||
|
||||
func has1extraBit(F: type Fp): bool =
|
||||
func has1extraBit*(F: type Fp): bool =
|
||||
## We construct extensions only on Fp (and not Fr)
|
||||
getSpareBits(F) >= 1
|
||||
|
||||
func has2extraBits(F: type Fp): bool =
|
||||
func has2extraBits*(F: type Fp): bool =
|
||||
## We construct extensions only on Fp (and not Fr)
|
||||
getSpareBits(F) >= 2
|
||||
|
||||
func has1extraBit(E: type ExtensionField): bool =
|
||||
func has1extraBit*(E: type ExtensionField): bool =
|
||||
## We construct extensions only on Fp (and not Fr)
|
||||
getSpareBits(Fp[E.F.C]) >= 1
|
||||
|
||||
func has2extraBits(E: type ExtensionField): bool =
|
||||
func has2extraBits*(E: type ExtensionField): bool =
|
||||
## We construct extensions only on Fp (and not Fr)
|
||||
getSpareBits(Fp[E.F.C]) >= 2
|
||||
|
||||
template C(E: type ExtensionField2x): Curve =
|
||||
E.F.C
|
||||
|
||||
template c0(a: ExtensionField2x): auto =
|
||||
template c0*(a: ExtensionField2x): auto =
|
||||
a.coords[0]
|
||||
template c1(a: ExtensionField2x): auto =
|
||||
template c1*(a: ExtensionField2x): auto =
|
||||
a.coords[1]
|
||||
template c2(a: CubicExt2x): auto =
|
||||
template c2*(a: CubicExt2x): auto =
|
||||
a.coords[2]
|
||||
|
||||
template `c0=`(a: var ExtensionField2x, v: auto) =
|
||||
template `c0=`*(a: var ExtensionField2x, v: auto) =
|
||||
a.coords[0] = v
|
||||
template `c1=`(a: var ExtensionField2x, v: auto) =
|
||||
template `c1=`*(a: var ExtensionField2x, v: auto) =
|
||||
a.coords[1] = v
|
||||
template `c2=`(a: var CubicExt2x, v: auto) =
|
||||
template `c2=`*(a: var CubicExt2x, v: auto) =
|
||||
a.coords[2] = v
|
||||
|
||||
# Initialization
|
||||
|
@ -305,32 +308,32 @@ func setZero*(a: var ExtensionField2x) =
|
|||
# Abelian group
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func sumUnr(r: var ExtensionField, a, b: ExtensionField) =
|
||||
func sumUnr*(r: var ExtensionField, a, b: ExtensionField) =
|
||||
## Sum ``a`` and ``b`` into ``r``
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].sumUnr(a.coords[i], b.coords[i])
|
||||
|
||||
func diff2xUnr(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
func diff2xUnr*(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
## Double-precision substraction without reduction
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].diff2xUnr(a.coords[i], b.coords[i])
|
||||
|
||||
func diff2xMod(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
func diff2xMod*(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
## Double-precision modular substraction
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].diff2xMod(a.coords[i], b.coords[i])
|
||||
|
||||
func sum2xUnr(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
func sum2xUnr*(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
## Double-precision addition without reduction
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].sum2xUnr(a.coords[i], b.coords[i])
|
||||
|
||||
func sum2xMod(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
func sum2xMod*(r: var ExtensionField2x, a, b: ExtensionField2x) =
|
||||
## Double-precision modular addition
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].sum2xMod(a.coords[i], b.coords[i])
|
||||
|
||||
func neg2xMod(r: var ExtensionField2x, a: ExtensionField2x) =
|
||||
func neg2xMod*(r: var ExtensionField2x, a: ExtensionField2x) =
|
||||
## Double-precision modular negation
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].neg2xMod(a.coords[i], b.coords[i])
|
||||
|
@ -338,7 +341,7 @@ func neg2xMod(r: var ExtensionField2x, a: ExtensionField2x) =
|
|||
# Reductions
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func redc2x(r: var ExtensionField, a: ExtensionField2x) =
|
||||
func redc2x*(r: var ExtensionField, a: ExtensionField2x) =
|
||||
## Reduction
|
||||
staticFor i, 0, a.coords.len:
|
||||
r.coords[i].redc2x(a.coords[i])
|
||||
|
@ -346,7 +349,7 @@ func redc2x(r: var ExtensionField, a: ExtensionField2x) =
|
|||
# Multiplication by a small integer known at compile-time
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func prod2x(r: var ExtensionField2x, a: ExtensionField2x, b: static int) =
|
||||
func prod2x*(r: var ExtensionField2x, a: ExtensionField2x, b: static int) =
|
||||
## Multiplication by a small integer known at compile-time
|
||||
for i in 0 ..< a.coords.len:
|
||||
r.coords[i].prod2x(a.coords[i], b)
|
||||
|
@ -360,20 +363,20 @@ func prod2x(r: var FpDbl, a: FpDbl, _: type NonResidue){.inline.} =
|
|||
static: doAssert FpDbl.C.getNonResidueFp() != -1, "𝔽p2 should be specialized for complex extension"
|
||||
r.prod2x(a, FpDbl.C.getNonResidueFp())
|
||||
|
||||
func prod2x[C: static Curve](
|
||||
r {.noalias.}: var QuadraticExt2x[FpDbl[C]],
|
||||
a {.noalias.}: QuadraticExt2x[FpDbl[C]],
|
||||
func prod2x*[C: static Curve](
|
||||
r: var QuadraticExt2x[FpDbl[C]],
|
||||
a: QuadraticExt2x[FpDbl[C]],
|
||||
_: type NonResidue) {.inline.} =
|
||||
## Multiplication by non-residue
|
||||
## ! no aliasing!
|
||||
const complex = C.getNonResidueFp() == -1
|
||||
const U = C.getNonResidueFp2()[0]
|
||||
const V = C.getNonResidueFp2()[1]
|
||||
const Beta {.used.} = C.getNonResidueFp()
|
||||
|
||||
when complex and U == 1 and V == 1:
|
||||
r.c0.diff2xMod(a.c0, a.c1)
|
||||
r.c1.sum2xMod(a.c0, a.c1)
|
||||
let a1 = a.c1
|
||||
r.c1.sum2xMod(a.c0, a1)
|
||||
r.c0.diff2xMod(a.c0, a1)
|
||||
else:
|
||||
# Case:
|
||||
# - BN254_Snarks, QNR_Fp: -1, SNR_Fp2: 9+1𝑖 (𝑖 = √-1)
|
||||
|
@ -383,10 +386,10 @@ func prod2x[C: static Curve](
|
|||
# mul_sparse_by_0v
|
||||
# r0 = β a1 v
|
||||
# r1 = a0 v
|
||||
# r and a don't alias, we use `r` as a temp location
|
||||
r.c1.prod2x(a.c1, V)
|
||||
r.c0.prod2x(r.c1, NonResidue)
|
||||
var t {.noInit.}: FpDbl[C]
|
||||
t.prod2x(a.c1, V)
|
||||
r.c1.prod2x(a.c0, V)
|
||||
r.c0.prod2x(t, NonResidue)
|
||||
else:
|
||||
# ξ = u + v x
|
||||
# and x² = β
|
||||
|
@ -395,15 +398,43 @@ func prod2x[C: static Curve](
|
|||
# => u c0 + β v c1 + (v c0 + u c1) x
|
||||
var t {.noInit.}: FpDbl[C]
|
||||
|
||||
r.c0.prod2x(a.c0, U)
|
||||
t.prod2x(a.c0, U)
|
||||
when V == 1 and Beta == -1: # Case BN254_Snarks
|
||||
r.c0.diff2xMod(r.c0, a.c1) # r0 = u c0 + β v c1
|
||||
t.diff2xMod(t, a.c1) # r0 = u c0 + β v c1
|
||||
else:
|
||||
{.error: "Unimplemented".}
|
||||
|
||||
r.c1.prod2x(a.c0, V)
|
||||
t.prod2x(a.c1, U)
|
||||
r.c1.sum2xMod(r.c1, t) # r1 = v c0 + u c1
|
||||
|
||||
r.c1.prod2x(a.c1, U)
|
||||
when V == 1: # r1 = v c0 + u c1
|
||||
r.c1.sum2xMod(r.c1, a.c0)
|
||||
# aliasing: a.c0 is unused
|
||||
`=`(r.c0, t) # "r.c0 = t", is refused by the compiler.
|
||||
else:
|
||||
{.error: "Unimplemented".}
|
||||
|
||||
func prod2x*(
|
||||
r: var QuadraticExt2x,
|
||||
a: QuadraticExt2x,
|
||||
_: type NonResidue) {.inline.} =
|
||||
## Multiplication by non-residue
|
||||
static: doAssert not(r.c0 is FpDbl), "Wrong dispatch, there is a specific non-residue multiplication for the base extension."
|
||||
let t = a.c0
|
||||
r.c0.prod2x(a.c1, NonResidue)
|
||||
`=`(r.c1, t) # "r.c1 = t", is refused by the compiler.
|
||||
|
||||
func prod2x*(
|
||||
r: var CubicExt2x,
|
||||
a: CubicExt2x,
|
||||
_: type NonResidue) {.inline.} =
|
||||
## Multiplication by non-residue
|
||||
## For all curves γ = v with v the factor for cubic extension coordinate
|
||||
## and v³ = ξ
|
||||
## (c0 + c1 v + c2 v²) v => ξ c2 + c0 v + c1 v²
|
||||
let t = a.c2
|
||||
r.c1 = a.c0
|
||||
r.c2 = a.c1
|
||||
r.c0.prod2x(t, NonResidue)
|
||||
|
||||
# ############################################################
|
||||
# #
|
||||
|
@ -414,8 +445,8 @@ func prod2x[C: static Curve](
|
|||
# Forward declarations
|
||||
# ----------------------------------------------------------------------
|
||||
|
||||
func prod2x(r: var QuadraticExt2x, a, b: QuadraticExt)
|
||||
func square2x(r: var QuadraticExt2x, a: QuadraticExt)
|
||||
func prod2x*(r: var QuadraticExt2x, a, b: QuadraticExt)
|
||||
func square2x*(r: var QuadraticExt2x, a: QuadraticExt)
|
||||
|
||||
# Commutative ring implementation for complex quadratic extension fields
|
||||
# ----------------------------------------------------------------------
|
||||
|
@ -455,10 +486,9 @@ func square2x_complex(r: var QuadraticExt2x, a: QuadraticExt) =
|
|||
|
||||
var t0 {.noInit.}, t1 {.noInit.}: typeof(a.c0)
|
||||
|
||||
# Require 2 extra bits
|
||||
when QuadraticExt.has2extraBits():
|
||||
when QuadraticExt.has1extraBit():
|
||||
t0.sumUnr(a.c1, a.c1)
|
||||
t1.sum(a.c0, a.c1)
|
||||
t1.sumUnr(a.c0, a.c1)
|
||||
else:
|
||||
t0.double(a.c1)
|
||||
t1.sum(a.c0, a.c1)
|
||||
|
@ -481,7 +511,7 @@ func square2x_complex(r: var QuadraticExt2x, a: QuadraticExt) =
|
|||
# - cyclotomic square in Fp2 -> Fp6 -> Fp12 towering
|
||||
# needs Fp4 as special case
|
||||
|
||||
func prod2x_disjoint[Fdbl, F](
|
||||
func prod2x_disjoint*[Fdbl, F](
|
||||
r: var QuadraticExt2x[FDbl],
|
||||
a: QuadraticExt[F],
|
||||
b0, b1: F) =
|
||||
|
@ -502,17 +532,13 @@ func prod2x_disjoint[Fdbl, F](
|
|||
t1.sum(b0, b1)
|
||||
|
||||
r.c1.prod2x(t0, t1) # r1 = (a0 + a1)(b0 + b1)
|
||||
when F.has1extraBit():
|
||||
r.c1.diff2xMod(r.c1, V0)
|
||||
r.c1.diff2xMod(r.c1, V1)
|
||||
else:
|
||||
r.c1.diff2xMod(r.c1, V0) # r1 = (a0 + a1)(b0 + b1) - a0b0
|
||||
r.c1.diff2xMod(r.c1, V1) # r1 = (a0 + a1)(b0 + b1) - a0b0 - a1b1
|
||||
r.c1.diff2xMod(r.c1, V0) # r1 = (a0 + a1)(b0 + b1) - a0b0
|
||||
r.c1.diff2xMod(r.c1, V1) # r1 = (a0 + a1)(b0 + b1) - a0b0 - a1b1
|
||||
|
||||
r.c0.prod2x(V1, NonResidue) # r0 = β a1 b1
|
||||
r.c0.sum2xMod(r.c0, V0) # r0 = a0 b0 + β a1 b1
|
||||
|
||||
func square2x_disjoint[Fdbl, F](
|
||||
func square2x_disjoint*[Fdbl, F](
|
||||
r: var QuadraticExt2x[FDbl],
|
||||
a0, a1: F) =
|
||||
## Return (a0, a1)² in r
|
||||
|
@ -535,17 +561,108 @@ func square2x_disjoint[Fdbl, F](
|
|||
r.c1.diff2xMod(r.c1, V0)
|
||||
r.c1.diff2xMod(r.c1, V1)
|
||||
|
||||
# Sparse multiplication
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func mul2x_sparse_by_x0*[Fdbl, F](
|
||||
r: var QuadraticExt2x[Fdbl], a: QuadraticExt[F],
|
||||
sparseB: auto) =
|
||||
## Multiply `a` by `b` with sparse coordinates (x, 0)
|
||||
## On a generic quadratic extension field
|
||||
# Algorithm (with β the non-residue in the base field)
|
||||
#
|
||||
# r0 = a0 b0 + β a1 b1
|
||||
# r1 = (a0 + a1) (b0 + b1) - a0 b0 - a1 b1 (Karatsuba)
|
||||
#
|
||||
# with b1 = 0, hence
|
||||
#
|
||||
# r0 = a0 b0
|
||||
# r1 = (a0 + a1) b0 - a0 b0 = a1 b0
|
||||
static: doAssert Fdbl is doublePrec(F)
|
||||
|
||||
when typeof(sparseB) is typeof(a):
|
||||
template b(): untyped = sparseB.c0
|
||||
elif typeof(sparseB) is typeof(a.c0):
|
||||
template b(): untyped = sparseB
|
||||
else:
|
||||
{.error: "sparseB type is " & $typeof(sparseB) &
|
||||
" which does not match with either a (" & $typeof(a) &
|
||||
") or a.c0 (" & $typeof(a.c0) & ")".}
|
||||
|
||||
r.c0.prod2x(a.c0, b)
|
||||
r.c1.prod2x(a.c1, b)
|
||||
|
||||
func mul2x_sparse_by_0y*[Fdbl, F](
|
||||
r: var QuadraticExt2x[Fdbl], a: QuadraticExt[F],
|
||||
sparseB: auto) =
|
||||
## Multiply `a` by `b` with sparse coordinates (0, y)
|
||||
## On a generic quadratic extension field
|
||||
# Algorithm (with β the non-residue in the base field)
|
||||
#
|
||||
# r0 = a0 b0 + β a1 b1
|
||||
# r1 = (a0 + a1) (b0 + b1) - a0 b0 - a1 b1 (Karatsuba)
|
||||
#
|
||||
# with b0 = 0, hence
|
||||
#
|
||||
# r0 = β a1 b1
|
||||
# r1 = (a0 + a1) b1 - a1 b1 = a0 b1
|
||||
static: doAssert Fdbl is doublePrec(F)
|
||||
|
||||
when typeof(sparseB) is typeof(a):
|
||||
template b(): untyped = sparseB.c1
|
||||
elif typeof(sparseB) is typeof(a.c0):
|
||||
template b(): untyped = sparseB
|
||||
else:
|
||||
{.error: "sparseB type is " & $typeof(sparseB) &
|
||||
" which does not match with either a (" & $typeof(a) &
|
||||
") or a.c0 (" & $typeof(a.c0) & ")".}
|
||||
|
||||
r.c0.prod2x(a.c1, b)
|
||||
r.c0.prod2x(r.c0, NonResidue)
|
||||
r.c1.prod2x(a.c0, b)
|
||||
|
||||
# Inversion
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func inv2xImpl(r: var QuadraticExt, a: QuadraticExt) =
|
||||
## Compute the multiplicative inverse of ``a``
|
||||
##
|
||||
## The inverse of 0 is 0.
|
||||
##
|
||||
## Inversion routine is using lazy reduction
|
||||
mixin fromComplexExtension
|
||||
|
||||
# [2 Sqr, 1 Add]
|
||||
var V0 {.noInit.}, V1 {.noInit.}: doublePrec(typeof(r.c0))
|
||||
var t {.noInit.}: typeof(r.c0)
|
||||
V0.square2x(a.c0)
|
||||
V1.square2x(a.c1)
|
||||
when r.fromComplexExtension():
|
||||
V0.sum2xUnr(V0, V1)
|
||||
else:
|
||||
V1.prod2x(V1, NonResidue)
|
||||
V0.diff2xMod(V0, V1) # v0 = a0² - β a1² (the norm / squared magnitude of a)
|
||||
|
||||
# [1 Inv, 2 Sqr, 1 Add]
|
||||
t.redc2x(V0)
|
||||
t.inv() # v1 = 1 / (a0² - β a1²)
|
||||
|
||||
# [1 Inv, 2 Mul, 2 Sqr, 1 Add, 1 Neg]
|
||||
r.c0.prod(a.c0, t) # r0 = a0 / (a0² - β a1²)
|
||||
t.neg() # v0 = -1 / (a0² - β a1²)
|
||||
r.c1.prod(a.c1, t) # r1 = -a1 / (a0² - β a1²)
|
||||
|
||||
# Dispatch
|
||||
# ----------------------------------------------------------------------
|
||||
|
||||
func prod2x(r: var QuadraticExt2x, a, b: QuadraticExt) =
|
||||
func prod2x*(r: var QuadraticExt2x, a, b: QuadraticExt) =
|
||||
mixin fromComplexExtension
|
||||
when a.fromComplexExtension():
|
||||
r.prod2x_complex(a, b)
|
||||
else:
|
||||
r.prod2x_disjoint(a, b.c0, b.c1)
|
||||
|
||||
func square2x(r: var QuadraticExt2x, a: QuadraticExt) =
|
||||
func square2x*(r: var QuadraticExt2x, a: QuadraticExt) =
|
||||
mixin fromComplexExtension
|
||||
when a.fromComplexExtension():
|
||||
r.square2x_complex(a)
|
||||
|
@ -558,6 +675,98 @@ func square2x(r: var QuadraticExt2x, a: QuadraticExt) =
|
|||
# #
|
||||
# ############################################################
|
||||
|
||||
# Commutative ring implementation for Cubic Extension Fields
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func square2x_Chung_Hasan_SQR2(r: var CubicExt2x, a: CubicExt) =
|
||||
## Returns r = a²
|
||||
var m01{.noInit.}, m12{.noInit.}: typeof(r.c0) # double-width
|
||||
var t{.noInit.}: typeof(a.c0) # single width
|
||||
|
||||
m01.prod2x(a.c0, a.c1)
|
||||
m01.sum2xMod(m01, m01) # 2a₀a₁
|
||||
m12.prod2x(a.c1, a.c2)
|
||||
m12.sum2xMod(m12, m12) # 2a₁a₂
|
||||
r.c0.square2x(a.c2) # borrow r₀ = a₂² for a moment
|
||||
|
||||
# r₂ = (a₀ - a₁ + a₂)²
|
||||
t.sum(a.c2, a.c0)
|
||||
t -= a.c1
|
||||
r.c2.square2x(t)
|
||||
|
||||
# r₂ = (a₀ - a₁ + a₂)² + 2a₀a₁ + 2a₁a₂ - a₂²
|
||||
r.c2.sum2xMod(r.c2, m01)
|
||||
r.c2.sum2xMod(r.c2, m12)
|
||||
r.c2.diff2xMod(r.c2, r.c0)
|
||||
|
||||
# r₁ = 2a₀a₁ + β a₂²
|
||||
r.c1.prod2x(r.c0, NonResidue)
|
||||
r.c1.sum2xMod(r.c1, m01)
|
||||
|
||||
# r₂ = (a₀ - a₁ + a₂)² + 2a₀a₁ + 2a₁a₂ - a₀² - a₂²
|
||||
r.c0.square2x(a.c0)
|
||||
r.c2.diff2xMod(r.c2, r.c0)
|
||||
|
||||
# r₀ = a₀² + β 2a₁a₂
|
||||
m12.prod2x(m12, NonResidue)
|
||||
r.c0.sum2xMod(r.c0, m12)
|
||||
|
||||
func prod2xImpl(r: var CubicExt2x, a, b: CubicExt) =
|
||||
var V0 {.noInit.}, V1 {.noInit.}, V2 {.noinit.}: typeof(r.c0)
|
||||
var t0 {.noInit.}, t1 {.noInit.}: typeof(a.c0)
|
||||
|
||||
V0.prod2x(a.c0, b.c0)
|
||||
V1.prod2x(a.c1, b.c1)
|
||||
V2.prod2x(a.c2, b.c2)
|
||||
|
||||
# r₀ = β ((a₁ + a₂)(b₁ + b₂) - v₁ - v₂) + v₀
|
||||
when false: # CubicExt.has1extraBit():
|
||||
t0.sumUnr(a.c1, a.c2)
|
||||
t1.sumUnr(b.c1, b.c2)
|
||||
else:
|
||||
t0.sum(a.c1, a.c2)
|
||||
t1.sum(b.c1, b.c2)
|
||||
r.c0.prod2x(t0, t1) # r cannot alias a or b since it's double precision
|
||||
r.c0.diff2xMod(r.c0, V1)
|
||||
r.c0.diff2xMod(r.c0, V2)
|
||||
r.c0.prod2x(r.c0, NonResidue)
|
||||
r.c0.sum2xMod(r.c0, V0)
|
||||
|
||||
# r₁ = (a₀ + a₁) * (b₀ + b₁) - v₀ - v₁ + β v₂
|
||||
when false: # CubicExt.has1extraBit():
|
||||
t0.sumUnr(a.c0, a.c1)
|
||||
t1.sumUnr(b.c0, b.c1)
|
||||
else:
|
||||
t0.sum(a.c0, a.c1)
|
||||
t1.sum(b.c0, b.c1)
|
||||
r.c1.prod2x(t0, t1)
|
||||
r.c1.diff2xMod(r.c1, V0)
|
||||
r.c1.diff2xMod(r.c1, V1)
|
||||
r.c2.prod2x(V2, NonResidue) # r₂ is unused and cannot alias
|
||||
r.c1.sum2xMod(r.c1, r.c2)
|
||||
|
||||
# r₂ = (a₀ + a₂) * (b₀ + b₂) - v₀ - v₂ + v₁
|
||||
when false: # CubicExt.has1extraBit():
|
||||
t0.sumUnr(a.c0, a.c2)
|
||||
t1.sumUnr(b.c0, b.c2)
|
||||
else:
|
||||
t0.sum(a.c0, a.c2)
|
||||
t1.sum(b.c0, b.c2)
|
||||
r.c2.prod2x(t0, t1)
|
||||
r.c2.diff2xMod(r.c2, V0)
|
||||
r.c2.diff2xMod(r.c2, V2)
|
||||
r.c2.sum2xMod(r.c2, V1)
|
||||
|
||||
# Dispatch
|
||||
# ----------------------------------------------------------------------
|
||||
|
||||
func square2x*(r: var CubicExt2x, a: CubicExt) {.inline.} =
|
||||
## Returns r = a²
|
||||
square2x_Chung_Hasan_SQR2(r, a)
|
||||
|
||||
func prod2x*(r: var CubicExt2x, a, b: CubicExt) {.inline.} =
|
||||
## Returns r = ab
|
||||
prod2xImpl(r, a, b)
|
||||
|
||||
# ############################################################
|
||||
# #
|
||||
|
@ -800,7 +1009,10 @@ func prod_generic(r: var QuadraticExt, a, b: QuadraticExt) =
|
|||
v1 *= NonResidue
|
||||
r.c0.sum(v0, v1)
|
||||
|
||||
func mul_sparse_generic_by_x0(r: var QuadraticExt, a, sparseB: QuadraticExt) =
|
||||
# Sparse multiplication
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func mul_sparse_generic_by_x0(r: var QuadraticExt, a: QuadraticExt, sparseB: auto) =
|
||||
## Multiply `a` by `b` with sparse coordinates (x, 0)
|
||||
## On a generic quadratic extension field
|
||||
# Algorithm (with β the non-residue in the base field)
|
||||
|
@ -812,10 +1024,17 @@ func mul_sparse_generic_by_x0(r: var QuadraticExt, a, sparseB: QuadraticExt) =
|
|||
#
|
||||
# r0 = a0 b0
|
||||
# r1 = (a0 + a1) b0 - a0 b0 = a1 b0
|
||||
template b(): untyped = sparseB
|
||||
when typeof(sparseB) is typeof(a):
|
||||
template b(): untyped = sparseB.c0
|
||||
elif typeof(sparseB) is typeof(a.c0):
|
||||
template b(): untyped = sparseB
|
||||
else:
|
||||
{.error: "sparseB type is " & $typeof(sparseB) &
|
||||
" which does not match with either a (" & $typeof(a) &
|
||||
") or a.c0 (" & $typeof(a.c0) & ")".}
|
||||
|
||||
r.c0.prod(a.c0, b.c0)
|
||||
r.c1.prod(a.c1, b.c0)
|
||||
r.c0.prod(a.c0, b)
|
||||
r.c1.prod(a.c1, b)
|
||||
|
||||
func mul_sparse_generic_by_0y(
|
||||
r: var QuadraticExt, a: QuadraticExt,
|
||||
|
@ -870,6 +1089,9 @@ func mul_sparse_generic_by_0y(
|
|||
# aliasing: a unneeded now
|
||||
r.c0.prod(t, NonResidue)
|
||||
|
||||
# Inversion
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func invImpl(r: var QuadraticExt, a: QuadraticExt) =
|
||||
## Compute the multiplicative inverse of ``a``
|
||||
##
|
||||
|
@ -959,7 +1181,10 @@ func inv*(r: var QuadraticExt, a: QuadraticExt) =
|
|||
## Incidentally this avoids extra check
|
||||
## to convert Jacobian and Projective coordinates
|
||||
## to affine for elliptic curve
|
||||
r.invImpl(a)
|
||||
when true:
|
||||
r.invImpl(a)
|
||||
else: # Lazy reduction, doesn't seem to gain speed.
|
||||
r.inv2xImpl(a)
|
||||
|
||||
func inv*(a: var QuadraticExt) =
|
||||
## Compute the multiplicative inverse of ``a``
|
||||
|
@ -968,7 +1193,7 @@ func inv*(a: var QuadraticExt) =
|
|||
## Incidentally this avoids extra check
|
||||
## to convert Jacobian and Projective coordinates
|
||||
## to affine for elliptic curve
|
||||
a.invImpl(a)
|
||||
a.inv(a)
|
||||
|
||||
func `*=`*(a: var QuadraticExt, b: QuadraticExt) =
|
||||
## In-place multiplication
|
||||
|
@ -1147,6 +1372,12 @@ func prodImpl(r: var CubicExt, a, b: CubicExt) =
|
|||
# Finish r₀
|
||||
r.c0.sum(t0, v0)
|
||||
|
||||
# Sparse multiplication
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
# Inversion
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
func invImpl(r: var CubicExt, a: CubicExt) =
|
||||
## Compute the multiplicative inverse of ``a``
|
||||
##
|
||||
|
@ -1208,7 +1439,15 @@ func invImpl(r: var CubicExt, a: CubicExt) =
|
|||
|
||||
func square*(r: var CubicExt, a: CubicExt) =
|
||||
## Returns r = a²
|
||||
square_Chung_Hasan_SQR3(r, a)
|
||||
when CubicExt.F.C == BW6_761 or # Too large
|
||||
CubicExt.F.C == BN254_Snarks: # 50 cycles slower on Fp2->Fp4->Fp12 towering
|
||||
square_Chung_Hasan_SQR3(r, a)
|
||||
else:
|
||||
var d {.noInit.}: doublePrec(typeof(a))
|
||||
d.square2x_Chung_Hasan_SQR2(a)
|
||||
r.c0.redc2x(d.c0)
|
||||
r.c1.redc2x(d.c1)
|
||||
r.c2.redc2x(d.c2)
|
||||
|
||||
func square*(a: var CubicExt) =
|
||||
## In-place squaring
|
||||
|
@ -1216,11 +1455,25 @@ func square*(a: var CubicExt) =
|
|||
|
||||
func prod*(r: var CubicExt, a, b: CubicExt) =
|
||||
## In-place multiplication
|
||||
r.prodImpl(a, b)
|
||||
when CubicExt.F.C == BW6_761: # Too large
|
||||
r.prodImpl(a, b)
|
||||
else:
|
||||
var d {.noInit.}: doublePrec(typeof(r))
|
||||
d.prod2x(a, b)
|
||||
r.c0.redc2x(d.c0)
|
||||
r.c1.redc2x(d.c1)
|
||||
r.c2.redc2x(d.c2)
|
||||
|
||||
func `*=`*(a: var CubicExt, b: CubicExt) =
|
||||
## In-place multiplication
|
||||
a.prodImpl(a, b)
|
||||
when CubicExt.F.C == BW6_761: # Too large
|
||||
a.prodImpl(a, b)
|
||||
else:
|
||||
var d {.noInit.}: doublePrec(typeof(a))
|
||||
d.prod2x(a, b)
|
||||
a.c0.redc2x(d.c0)
|
||||
a.c1.redc2x(d.c1)
|
||||
a.c2.redc2x(d.c2)
|
||||
|
||||
func inv*(r: var CubicExt, a: CubicExt) =
|
||||
## Compute the multiplicative inverse of ``a``
|
||||
|
|
|
@ -226,7 +226,7 @@ func `*=`*(a: var Fp4, _: type NonResidue) {.inline.} =
|
|||
a.prod(a, NonResidue)
|
||||
|
||||
func prod*(r: var Fp6, a: Fp6, _: type NonResidue) {.inline.} =
|
||||
## Multiply an element of 𝔽p4 by the non-residue
|
||||
## Multiply an element of 𝔽p6 by the non-residue
|
||||
## chosen to construct the next extension or the twist:
|
||||
## - if quadratic non-residue: 𝔽p12
|
||||
## - if cubic non-residue: 𝔽p18
|
||||
|
@ -243,7 +243,7 @@ func prod*(r: var Fp6, a: Fp6, _: type NonResidue) {.inline.} =
|
|||
r.c0.prod(t, NonResidue)
|
||||
|
||||
func `*=`*(a: var Fp6, _: type NonResidue) {.inline.} =
|
||||
## Multiply an element of 𝔽p4 by the non-residue
|
||||
## Multiply an element of 𝔽p6 by the non-residue
|
||||
## chosen to construct the next extension or the twist:
|
||||
## - if quadratic non-residue: 𝔽p12
|
||||
## - if cubic non-residue: 𝔽p18
|
||||
|
@ -272,12 +272,6 @@ func `*=`*(a: var Fp2, b: Fp) =
|
|||
a.c0 *= b
|
||||
a.c1 *= b
|
||||
|
||||
func mul_sparse_by_y0*[C: static Curve](r: var Fp4[C], a: Fp4[C], b: Fp2[C]) =
|
||||
## Sparse multiplication of an Fp4 element
|
||||
## with coordinates (a₀, a₁) by (b₀, 0)
|
||||
r.c0.prod(a.c0, b)
|
||||
r.c1.prod(a.c1, b)
|
||||
|
||||
func mul_sparse_by_0y0*[C: static Curve](r: var Fp6[C], a: Fp6[C], b: Fp2[C]) =
|
||||
## Sparse multiplication of an Fp6 element
|
||||
## with coordinates (a₀, a₁, a₂) by (0, b₁, 0)
|
||||
|
|
|
@ -68,7 +68,7 @@ proc test_sameBaseProduct(C: static Curve, gen: RandomGen) =
|
|||
xapb.powUnsafeExponent(apb, window = 3)
|
||||
|
||||
xa *= xb
|
||||
check: bool(xa == xapb)
|
||||
doAssert: bool(xa == xapb)
|
||||
|
||||
proc test_powpow(C: static Curve, gen: RandomGen) =
|
||||
## (xᴬ)ᴮ = xᴬᴮ - power of power
|
||||
|
@ -86,7 +86,7 @@ proc test_powpow(C: static Curve, gen: RandomGen) =
|
|||
x.powUnsafeExponent(b, window = 3)
|
||||
|
||||
y.powUnsafeExponent(ab, window = 3)
|
||||
check: bool(x == y)
|
||||
doAssert: bool(x == y)
|
||||
|
||||
proc test_powprod(C: static Curve, gen: RandomGen) =
|
||||
## (xy)ᴬ = xᴬyᴬ - power of product
|
||||
|
@ -105,7 +105,7 @@ proc test_powprod(C: static Curve, gen: RandomGen) =
|
|||
|
||||
x *= y
|
||||
|
||||
check: bool(x == xy)
|
||||
doAssert: bool(x == xy)
|
||||
|
||||
proc test_pow0(C: static Curve, gen: RandomGen) =
|
||||
## x⁰ = 1
|
||||
|
@ -113,7 +113,7 @@ proc test_pow0(C: static Curve, gen: RandomGen) =
|
|||
var a: BigInt[128] # 0-init
|
||||
|
||||
x.powUnsafeExponent(a, window=3)
|
||||
check: bool x.isOne()
|
||||
doAssert: bool x.isOne()
|
||||
|
||||
proc test_0pow0(C: static Curve, gen: RandomGen) =
|
||||
## 0⁰ = 1
|
||||
|
@ -121,7 +121,7 @@ proc test_0pow0(C: static Curve, gen: RandomGen) =
|
|||
var a: BigInt[128] # 0-init
|
||||
|
||||
x.powUnsafeExponent(a, window=3)
|
||||
check: bool x.isOne()
|
||||
doAssert: bool x.isOne()
|
||||
|
||||
proc test_powinv(C: static Curve, gen: RandomGen) =
|
||||
## xᴬ / xᴮ = xᴬ⁻ᴮ - quotient of power
|
||||
|
@ -150,7 +150,7 @@ proc test_powinv(C: static Curve, gen: RandomGen) =
|
|||
discard amb.diff(a, b)
|
||||
xamb.powUnsafeExponent(amb, window = 3)
|
||||
|
||||
check: bool(xa == xamb)
|
||||
doAssert: bool(xa == xamb)
|
||||
|
||||
proc test_invpow(C: static Curve, gen: RandomGen) =
|
||||
## (x / y)ᴬ = xᴬ / yᴬ - power of quotient
|
||||
|
@ -173,7 +173,7 @@ proc test_invpow(C: static Curve, gen: RandomGen) =
|
|||
xqya *= invy
|
||||
xqya.powUnsafeExponent(a, window = 3)
|
||||
|
||||
check: bool(xa == xqya)
|
||||
doAssert: bool(xa == xqya)
|
||||
|
||||
suite "Exponentiation in 𝔽p12" & " [" & $WordBitwidth & "-bit mode]":
|
||||
staticFor(curve, TestCurves):
|
||||
|
|
|
@ -256,16 +256,22 @@ proc runTowerTests*[N](
|
|||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(x, Z)
|
||||
check: bool(r == Z)
|
||||
doAssert bool(r == Z),
|
||||
"\nExpected zero but got (" & $ExtField(ExtDegree, curve) & "): " & x.toHex()
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(Z, x)
|
||||
check: bool(r == Z)
|
||||
doAssert bool(r == Z),
|
||||
"\nExpected zero but got (" & $ExtField(ExtDegree, curve) & "): " & x.toHex()
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(x, O)
|
||||
check: bool(r == x)
|
||||
doAssert bool(r == x),
|
||||
"\n(" & $ExtField(ExtDegree, curve) & "): Expected one: " & O.toHex() & "\n" &
|
||||
"got: " & x.toHex()
|
||||
test(ExtField(ExtDegree, curve)):
|
||||
r.prod(O, x)
|
||||
check: bool(r == x)
|
||||
doAssert bool(r == x),
|
||||
"\n(" & $ExtField(ExtDegree, curve) & "): Expected one: " & O.toHex() & "\n" &
|
||||
"got: " & x.toHex()
|
||||
|
||||
test "Multiplication and Squaring are consistent":
|
||||
proc test(Field: typedesc, Iters: static int, gen: static RandomGen) =
|
||||
|
@ -276,7 +282,9 @@ proc runTowerTests*[N](
|
|||
rMul.prod(a, a)
|
||||
rSqr.square(a)
|
||||
|
||||
doAssert bool(rMul == rSqr), "Failure with a (" & $Field & "): " & a.toHex()
|
||||
doAssert bool(rMul == rSqr), "Failure with a (" & $Field & "): " & a.toHex() & "\n" &
|
||||
"Mul: " & rMul.toHex() & "\n" &
|
||||
"Sqr: " & rSqr.toHex() & "\n"
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters, gen = Uniform)
|
||||
|
@ -295,7 +303,9 @@ proc runTowerTests*[N](
|
|||
rSqr.square(a)
|
||||
rNegSqr.square(na)
|
||||
|
||||
doAssert bool(rSqr == rNegSqr), "Failure with a (" & $Field & "): " & a.toHex()
|
||||
doAssert bool(rSqr == rNegSqr), "Failure with a (" & $Field & "): " & a.toHex() & "\n" &
|
||||
"Sqr: " & rSqr.toHex() & "\n" &
|
||||
"SqrNeg: " & rNegSqr.toHex() & "\n"
|
||||
|
||||
staticFor(curve, TestCurves):
|
||||
test(ExtField(ExtDegree, curve), Iters, gen = Uniform)
|
||||
|
|
Loading…
Reference in New Issue