constantine/benchmarks/bench_pairing_template.nim

310 lines
9.6 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Benchmark of pairings
#
# ############################################################
import
# Internals
../constantine/platforms/abstractions,
../constantine/math/config/curves,
../constantine/math/arithmetic,
../constantine/math/extension_fields,
../constantine/math/ec_shortweierstrass,
../constantine/math/constants/zoo_subgroups,
../constantine/math/pairings/[
cyclotomic_subgroups,
lines_eval,
pairings_bls12,
pairings_bn
],
../constantine/math/constants/zoo_pairings,
# Helpers
2020-12-15 19:18:36 +01:00
../helpers/prng_unsafe,
./bench_blueprint
export abstractions
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
2020-12-15 19:18:36 +01:00
export notes
proc separator*() = separator(132)
2020-12-15 19:18:36 +01:00
proc report(op, curve: string, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stopTime-startTime) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op"
template bench(op: string, C: static Curve, iters: int, body: untyped): untyped =
2020-12-15 19:18:36 +01:00
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, $C, startTime, stopTime, startClk, stopClk, iters)
func clearCofactor[F; G: static Subgroup](
ec: var ECP_ShortW_Aff[F, G]) =
# For now we don't have any affine operation defined
var t {.noInit.}: ECP_ShortW_Prj[F, G]
t.fromAffine(ec)
t.clearCofactor()
ec.affine(t)
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
result = rng.random_unsafe(EC)
result.clearCofactor()
proc lineDoubleBench*(C: static Curve, iters: int) =
var line: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
bench("Line double", C, iters):
line.line_double(T, P)
proc lineAddBench*(C: static Curve, iters: int) =
var line: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
bench("Line add", C, iters):
line.line_add(T, Q, P)
proc mulFp12byLine_Bench*(C: static Curve, iters: int) =
var line: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
line.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by line", C, iters):
f.mul_by_line(line)
proc mulLinebyLine_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f {.noInit.}: Fp12[C]
bench("Mul line by line", C, iters):
f.prod_from_2_lines(l0, l1)
proc mulFp12by_prod2lines_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
let g = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by product of 2 lines", C, iters):
f.mul_by_prod_of_2_lines(g)
proc mulFp12_by_2lines_v1_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("mulFp12 by 2 lines v1", C, iters):
f.mul_by_line(l0)
f.mul_by_line(l1)
proc mulFp12_by_2lines_v2_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("mulFp12 by 2 lines v2", C, iters):
var f2 {.noInit.}: Fp12[C]
f2.prod_from_2_lines(l0, l1)
f.mul_by_prod_of_2_lines(f2)
proc mulBench*(C: static Curve, iters: int) =
var r: Fp12[C]
let x = rng.random_unsafe(Fp12[C])
let y = rng.random_unsafe(Fp12[C])
preventOptimAway(r)
bench("Multiplication 𝔽p12", C, iters):
r.prod(x, y)
proc sqrBench*(C: static Curve, iters: int) =
var r: Fp12[C]
let x = rng.random_unsafe(Fp12[C])
preventOptimAway(r)
bench("Squaring 𝔽p12", C, iters):
r.square(x)
proc cyclotomicSquare_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
bench("Squaring 𝔽p12 in cyclotomic subgroup", C, iters):
f.cyclotomic_square()
proc expCurveParamBench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
bench("Cyclotomic Exp by curve parameter", C, iters):
f.cycl_exp_by_curve_param(f)
proc cyclotomicSquareCompressed_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
var g: G2345[Fp2[C]]
g.fromFpk(f)
bench("Cyclotomic Compressed Squaring 𝔽p12", C, iters):
g.cyclotomic_square_compressed()
proc cyclotomicDecompression_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
var gs: array[1, G2345[Fp2[C]]]
gs[0].fromFpk(f)
var g1s_ratio: array[1, tuple[g1_num, g1_den: Fp2[C]]]
var g0s, g1s: array[1, Fp2[C]]
bench("Cyclotomic Decompression 𝔽p12", C, iters):
recover_g1(g1s_ratio[0].g1_num, g1s_ratio[0].g1_den, gs[0])
g1s.batch_ratio_g1s(g1s_ratio)
g0s[0].recover_g0(g1s[0], gs[0])
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Miller Loop BLS12", C, iters):
f.millerLoopGenericBLS12(Q, P)
proc millerLoopBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Miller Loop BN", C, iters):
f.millerLoopGenericBN(Q, P)
proc finalExpEasyBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation Easy", C, iters):
r.finalExpEasy()
proc finalExpHardBLS12Bench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
r.finalExpEasy()
bench("Final Exponentiation Hard BLS12", C, iters):
r.finalExpHard_BLS12()
proc finalExpHardBNBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
r.finalExpEasy()
bench("Final Exponentiation Hard BN", C, iters):
r.finalExpHard_BN()
proc finalExpBLS12Bench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BLS12", C, iters):
r.finalExpEasy()
r.finalExpHard_BLS12()
proc finalExpBNBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BN", C, iters):
r.finalExpEasy()
r.finalExpHard_BN()
proc pairingBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Pairing BLS12", C, iters):
f.pairing_bls12(P, Q)
proc pairing_multisingle_BLS12Bench*(C: static Curve, N: static int, iters: int) =
var
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
GTs {.noInit.}: array[N, Fp12[C]]
for i in 0 ..< N:
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
var f: Fp12[C]
bench("Pairing BLS12 non-batched: " & $N, C, iters):
for i in 0 ..< N:
GTs[i].pairing_bls12(Ps[i], Qs[i])
f = GTs[0]
for i in 1 ..< N:
f *= GTs[i]
proc pairing_multipairing_BLS12Bench*(C: static Curve, N: static int, iters: int) =
var
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
for i in 0 ..< N:
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
var f: Fp12[C]
bench("Pairing BLS12 batched: " & $N, C, iters):
f.pairing_bls12(Ps, Qs)
proc pairingBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Pairing BN", C, iters):
f.pairing_bn(P, Q)
2022-05-08 19:01:23 +02:00
proc pairing_multisingle_BNBench*(C: static Curve, N: static int, iters: int) =
var
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
GTs {.noInit.}: array[N, Fp12[C]]
for i in 0 ..< N:
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
var f: Fp12[C]
bench("Pairing BN non-batched: " & $N, C, iters):
for i in 0 ..< N:
GTs[i].pairing_bn(Ps[i], Qs[i])
f = GTs[0]
for i in 1 ..< N:
f *= GTs[i]
proc pairing_multipairing_BNBench*(C: static Curve, N: static int, iters: int) =
var
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
for i in 0 ..< N:
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
var f: Fp12[C]
bench("Pairing BN batched: " & $N, C, iters):
f.pairing_bn(Ps, Qs)