Line refactor (#188)

* Align line evaluations to papers notations

* Adjust line fusion op

* precompute G2 b' for costly D-Twists
This commit is contained in:
Mamy Ratsimbazafy 2022-04-04 10:10:36 +02:00 committed by GitHub
parent 742cecce08
commit bde4f97b56
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 395 additions and 463 deletions

View File

@ -36,11 +36,11 @@ proc main() =
const curve = AvailableCurves[i]
lineDoubleBench(curve, Iters)
lineAddBench(curve, Iters)
mulFp12byLine_xyz000_Bench(curve, Iters)
mulLinebyLine_xyz000_Bench(curve, Iters)
mulFp12by_abcdefghij00_Bench(curve, Iters)
mulFp12_by_2lines_v1_xyz000_Bench(curve, Iters)
mulFp12_by_2lines_v2_xyz000_Bench(curve, Iters)
mulFp12byLine_Bench(curve, Iters)
mulLinebyLine_Bench(curve, Iters)
mulFp12by_prod2lines_Bench(curve, Iters)
mulFp12_by_2lines_v1_Bench(curve, Iters)
mulFp12_by_2lines_v2_Bench(curve, Iters)
separator()
mulBench(curve, Iters)
sqrBench(curve, Iters)

View File

@ -36,11 +36,11 @@ proc main() =
const curve = AvailableCurves[i]
lineDoubleBench(curve, Iters)
lineAddBench(curve, Iters)
mulFp12byLine_xy000z_Bench(curve, Iters)
mulLinebyLine_xy000z_Bench(curve, Iters)
mulFp12by_abcd00efghij_Bench(curve, Iters)
mulFp12_by_2lines_v1_xy000z_Bench(curve, Iters)
mulFp12_by_2lines_v2_xy000z_Bench(curve, Iters)
mulFp12byLine_Bench(curve, Iters)
mulLinebyLine_Bench(curve, Iters)
mulFp12by_prod2lines_Bench(curve, Iters)
mulFp12_by_2lines_v1_Bench(curve, Iters)
mulFp12_by_2lines_v2_Bench(curve, Iters)
separator()
mulBench(curve, Iters)
sqrBench(curve, Iters)

View File

@ -36,11 +36,11 @@ proc main() =
const curve = AvailableCurves[i]
lineDoubleBench(curve, Iters)
lineAddBench(curve, Iters)
mulFp12byLine_xyz000_Bench(curve, Iters)
mulLinebyLine_xyz000_Bench(curve, Iters)
mulFp12by_abcdefghij00_Bench(curve, Iters)
mulFp12_by_2lines_v1_xyz000_Bench(curve, Iters)
mulFp12_by_2lines_v2_xyz000_Bench(curve, Iters)
mulFp12byLine_Bench(curve, Iters)
mulLinebyLine_Bench(curve, Iters)
mulFp12by_prod2lines_Bench(curve, Iters)
mulFp12_by_2lines_v1_Bench(curve, Iters)
mulFp12_by_2lines_v2_Bench(curve, Iters)
separator()
mulBench(curve, Iters)
sqrBench(curve, Iters)

View File

@ -36,11 +36,11 @@ proc main() =
const curve = AvailableCurves[i]
lineDoubleBench(curve, Iters)
lineAddBench(curve, Iters)
mulFp12byLine_xyz000_Bench(curve, Iters)
mulLinebyLine_xyz000_Bench(curve, Iters)
mulFp12by_abcdefghij00_Bench(curve, Iters)
mulFp12_by_2lines_v1_xyz000_Bench(curve, Iters)
mulFp12_by_2lines_v2_xyz000_Bench(curve, Iters)
mulFp12byLine_Bench(curve, Iters)
mulLinebyLine_Bench(curve, Iters)
mulFp12by_prod2lines_Bench(curve, Iters)
mulFp12_by_2lines_v1_Bench(curve, Iters)
mulFp12_by_2lines_v2_Bench(curve, Iters)
separator()
mulBench(curve, Iters)
sqrBench(curve, Iters)

View File

@ -75,63 +75,35 @@ proc lineAddBench*(C: static Curve, iters: int) =
bench("Line add", C, iters):
line.line_add(T, Q, P)
proc mulFp12byLine_xyz000_Bench*(C: static Curve, iters: int) =
proc mulFp12byLine_Bench*(C: static Curve, iters: int) =
var line: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
line.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by line xyz000", C, iters):
f.mul_sparse_by_line_xyz000(line)
bench("Mul 𝔽p12 by line", C, iters):
f.mul_by_line(line)
proc mulFp12byLine_xy000z_Bench*(C: static Curve, iters: int) =
var line: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
line.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by line xy000z", C, iters):
f.mul_sparse_by_line_xy000z(line)
proc mulLinebyLine_xyz000_Bench*(C: static Curve, iters: int) =
proc mulLinebyLine_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
var f {.noInit.}: Fp12[C]
bench("Mul line xyz000 by line xyz000", C, iters):
f.prod_xyz000_xyz000_into_abcdefghij00(l0, l1)
bench("Mul line by line", C, iters):
f.prod_from_2_lines(l0, l1)
proc mulLinebyLine_xy000z_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("Mul line xy000z by line xy000z", C, iters):
f.prod_xy000z_xy000z_into_abcd00efghij(l0, l1)
proc mulFp12by_abcdefghij00_Bench*(C: static Curve, iters: int) =
proc mulFp12by_prod2lines_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
let g = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by abcdefghij00", C, iters):
f.mul_sparse_by_abcdefghij00(g)
bench("Mul 𝔽p12 by product of 2 lines", C, iters):
f.mul_by_prod_of_2_lines(g)
proc mulFp12by_abcd00efghij_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
let g = rng.random_unsafe(Fp12[C])
bench("Mul 𝔽p12 by abcd00efghij", C, iters):
f.mul_sparse_by_abcd00efghij(g)
proc mulFp12_by_2lines_v1_xyz000_Bench*(C: static Curve, iters: int) =
proc mulFp12_by_2lines_v1_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
@ -140,10 +112,10 @@ proc mulFp12_by_2lines_v1_xyz000_Bench*(C: static Curve, iters: int) =
var f = rng.random_unsafe(Fp12[C])
bench("mulFp12 by 2 lines v1", C, iters):
f.mul_sparse_by_line_xyz000(l0)
f.mul_sparse_by_line_xyz000(l1)
f.mul_by_line(l0)
f.mul_by_line(l1)
proc mulFp12_by_2lines_v2_xyz000_Bench*(C: static Curve, iters: int) =
proc mulFp12_by_2lines_v2_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
@ -153,33 +125,8 @@ proc mulFp12_by_2lines_v2_xyz000_Bench*(C: static Curve, iters: int) =
bench("mulFp12 by 2 lines v2", C, iters):
var f2 {.noInit.}: Fp12[C]
f2.prod_xyz000_xyz000_into_abcdefghij00(l0, l1)
f.mul_sparse_by_abcdefghij00(f2)
proc mulFp12_by_2lines_v1_xy000z_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("mulFp12 by 2 lines v1", C, iters):
f.mul_sparse_by_line_xy000z(l0)
f.mul_sparse_by_line_xy000z(l1)
proc mulFp12_by_2lines_v2_xy000z_Bench*(C: static Curve, iters: int) =
var l0, l1: Line[Fp2[C]]
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
l0.line_double(T, P)
l1.line_double(T, P)
var f = rng.random_unsafe(Fp12[C])
bench("mulFp12 by 2 lines v2", C, iters):
var f2 {.noInit.}: Fp12[C]
f2.prod_xy000z_xy000z_into_abcd00efghij(l0, l1)
f.mul_sparse_by_abcd00efghij(f2)
f2.prod_from_2_lines(l0, l1)
f.mul_by_prod_of_2_lines(f2)
proc mulBench*(C: static Curve, iters: int) =
var r: Fp12[C]

View File

@ -8,7 +8,7 @@
import
../config/curves,
../io/io_extfields
../io/[io_fields, io_extfields]
# Curve precomputed parameters
# -----------------------------------------------------------------
@ -16,3 +16,7 @@ const BLS12_377_coefB_G2* = Fp2[BLS12_377].fromHex(
"0x0",
"0x10222f6db0fd6f343bd03737460c589dc7b4f91cd5fd889129207b63c6bf8000dd39e5c1ccccccd1c9ed9999999999a"
)
const BLS12_377_coefB_G2_times_3* = Fp2[BLS12_377].fromHex(
"0x0",
"0x1582e9e796a73ef04fc0499f08107627b4f14c2672a760c18c2b4f2fb3aa000126f7dd026666666d0d3cccccccccccd"
)

View File

@ -8,7 +8,7 @@
import
../config/curves,
../io/io_extfields
../io/[io_fields, io_extfields]
# Curve precomputed parameters
# -----------------------------------------------------------------
@ -16,3 +16,7 @@ const BLS12_381_coefB_G2* = Fp2[BLS12_381].fromHex(
"0x4",
"0x4"
)
const BLS12_381_coefB_G2_times_3* = Fp2[BLS12_381].fromHex(
"0xc",
"0xc"
)

View File

@ -8,7 +8,7 @@
import
../config/curves,
../io/io_extfields
../io/[io_fields, io_extfields]
# Curve precomputed parameters
# -----------------------------------------------------------------
@ -16,3 +16,7 @@ const BN254_Nogami_coefB_G2* = Fp2[BN254_Nogami].fromHex(
"0x1",
"0x2523648240000001ba344d80000000086121000000000013a700000000000012"
)
const BN254_Nogami_coefB_G2_times_3* = Fp2[BN254_Nogami].fromHex(
"0x3",
"0x2523648240000001ba344d80000000086121000000000013a700000000000010"
)

View File

@ -8,7 +8,7 @@
import
../config/curves,
../io/io_extfields
../io/[io_fields, io_extfields]
# Curve precomputed parameters
# -----------------------------------------------------------------
@ -16,3 +16,7 @@ const BN254_Snarks_coefB_G2* = Fp2[BN254_Snarks].fromHex(
"0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5",
"0x9713b03af0fed4cd2cafadeed8fdf4a74fa084e52d1852e4a2bd0685c315d2"
)
const BN254_Snarks_coefB_G2_times_3* = Fp2[BN254_Snarks].fromHex(
"0x20753adca9c6bfb81499be5e509e8f8ff21b7c8d3cb039cf1ef69c66bce9b021",
"0x1c53b10b0d2fc7e67860f09cc8af9ddf5eee18eaf8748f8ade8371391494176"
)

View File

@ -8,9 +8,11 @@
import
../config/curves,
../io/io_fields
../io/[io_fields, io_extfields]
# Curve precomputed parameters
# -----------------------------------------------------------------
const BW6_761_coefB_G2* = Fp[BW6_761].fromHex(
"0x4")
const BW6_761_coefB_G2_times_3* = Fp[BW6_761].fromHex(
"0xc")

View File

@ -25,3 +25,12 @@ macro getCoefB_G2*(C: static Curve): untyped =
## y² = x³ + b*µ (M-Twist)
## with µ the non-residue (sextic non-residue with a sextic twist)
return bindSym($C & "_coefB_G2")
macro getCoefB_G2_times_3*(C: static Curve): untyped =
## A pairing curve has the following equation on G1
## y² = x³ + b
## and on G2
## y² = x³ + b/µ (D-Twist)
## y² = x³ + b*µ (M-Twist)
## with µ the non-residue (sextic non-residue with a sextic twist)
return bindSym($C & "_coefB_G2_times_3")

View File

@ -724,7 +724,7 @@ func has_large_NR_norm(C: static Curve): bool =
return norm > 5
func has_large_field_elem(C: static Curve): bool =
func has_large_field_elem*(C: static Curve): bool =
## Returns true if field element are large
## and necessitate custom routine for assembly in particular
let a = default(Fp[C])
@ -1388,9 +1388,13 @@ func mul_sparse_by_0y*(a: var QuadraticExt, sparseB: auto) =
## Sparse in-place multiplication
a.mul_sparse_by_0y(a, sparseB)
func mul_sparse_by_x0*(r: var QuadraticExt, a: QuadraticExt, sparseB: auto) =
## Sparse in-place multiplication
r.mul_sparse_generic_by_x0(a, sparseB)
func mul_sparse_by_x0*(a: var QuadraticExt, sparseB: QuadraticExt) =
## Sparse in-place multiplication
a.mul_sparse_generic_by_x0(a, sparseB)
a.mul_sparse_by_x0(a, sparseB)
template mulCheckSparse*(a: var QuadraticExt, b: QuadraticExt) =
when b.isOne().bool:

View File

@ -16,7 +16,8 @@ import
ec_shortweierstrass_affine,
ec_shortweierstrass_projective
],
../io/io_extfields
../io/io_extfields,
../curves/zoo_constants
# No exceptions allowed
{.push raises: [].}
@ -38,7 +39,7 @@ import
#
# with z = SNR¹ᐟ⁶
#
# The cubic over quadatric towering
# The cubic over quadratic towering
# ---------------------------------
#
# (a₀ + a₁ u) + (a₂ + a₃u) v + (a₄ + a₅u) v²
@ -55,12 +56,13 @@ import
# Mapping between towering schemes
# --------------------------------
#
# c₀ <=> a₀ <=> b₀
# c₁ <=> a₂ <=> b₃
# c₂ <=> a₄ <=> b₁
# c₃ <=> a₁ <=> b₄
# c₄ <=> a₃ <=> b₂
# c₅ <=> a₅ <=> b₅
# canonical <=> cubic over quadratic <=> quadratic over cubic
# c₀ <=> a₀ <=> b₀
# c₁ <=> a₂ <=> b₃
# c₂ <=> a₄ <=> b₁
# c₃ <=> a₁ <=> b₄
# c₄ <=> a₃ <=> b₂
# c₅ <=> a₅ <=> b₅
#
# See also chapter 6.4
# - Multiplication and Squaring on Pairing-Friendly Fields
@ -69,7 +71,7 @@ import
type
Line*[F] = object
## Packed line representation over a E'(Fpᵏ/d)
## Packed line representation over a E'(𝔽pᵏ/d)
## with k the embedding degree and d the twist degree
## i.e. for a curve with embedding degree 12 and sextic twist
## F is Fp2
@ -80,16 +82,22 @@ type
## the non-zero coordinates depend on the twist kind.
##
## For a D-twist
## (x, y, z) corresponds to an sparse element of 𝔽p12
## with 𝔽p2 coordinates:
## - xyz000 (cubic over quadratic towering)
## - x00yz0 (quadratic over cubic towering)
## in canonical coordinates over sextic polynomial [1, w, w², w³, w⁴, w⁵]
## when evaluating the line at P(xₚ, yₚ)
## a.yₚ + b.xₚ w + c w³
##
## This translates in 𝔽pᵏ to
## - acb000 (cubic over quadratic towering)
## - a00bc0 (quadratic over cubic towering)
## For a M-Twist
## (x, y, z) corresponds to an sparse element of 𝔽p12
## with 𝔽p2 coordinates:
## - xy000z (cubic over quadratic towering)
## - xy00z0 (quadratic over cubic towering)
x*, y*, z*: F
## in canonical coordinates over sextic polynomial [1, w, w², w³, w⁴, w⁵]
## when evaluating the line at the twist ψ(P)(xₚw², yₚw³)
## a.yₚ w³ + b.xₚ w² + c
##
## This translates in 𝔽pᵏ to
## - ca00b0 (cubic over quadratic towering)
## - cb00a0 (quadratic over cubic towering)
a*, b*, c*: F
SexticNonResidue* = NonResidue
## The Sextic non-residue to build
@ -124,8 +132,13 @@ func line_update[F1, F2](line: var Line[F2], P: ECP_ShortW_Aff[F1, G1]) =
## after addition or doubling
## P in G1
static: doAssert F1.C == F2.C
line.x *= P.y
line.z *= P.x
# D-Twist: line at P(xₚ, yₚ):
# a.yₚ + b.xₚ w + c w³
#
# M-Twist: line at ψ(P)(xₚw², yₚw³)
# a.yₚ w³ + b.xₚ w² + c
line.a *= P.y
line.b *= P.x
# ############################################################
#
@ -149,189 +162,121 @@ func line_update[F1, F2](line: var Line[F2], P: ECP_ShortW_Aff[F1, G1]) =
# Patrick Longa, Shi Hu, and David Jao, 2012
# https://eprint.iacr.org/2012/408.pdf
# Line evaluation only
# Line evaluation
# -----------------------------------------------------------------------------
func line_eval_double[F](
line: var Line[F],
T: ECP_ShortW_Prj[F, G2]) =
## Evaluate the line function for doubling
## i.e. the tangent at T
##
## With T in homogenous projective coordinates (X, Y, Z)
## And ξ the sextic non residue to construct the towering
##
## M-Twist:
## A = -2ξ Y.Z
## B = 3bξ Z² - Y²
## C = 3 X²
##
## D-Twist are scaled by ξ to avoid dividing by ξ:
## A = -2ξ Y.Z
## B = 3b Z² - ξY²
## C = 3ξ X²
##
## Instead of
## - equation 10 from The Real of pairing, Aranha et al, 2013
## - or chapter 3 from pairing Implementation Revisited, Scott 2019
## A = -2 Y.Z
## B = 3b/ξ Z² - Y²
## C = 3 X²
##
## A constant factor will be wiped by the final exponentiation
## as for all non-zero α ∈ GF(pᵐ)
## with
## - p odd prime
## - and gcd(α,pᵐ) = 1 (i.e. the extension field pᵐ is using irreducible polynomials)
##
## Little Fermat holds and we have
## α^(pᵐ - 1) ≡ 1 (mod pᵐ)
##
## The final exponent is of the form
## (pᵏ-1)/r
##
## A constant factor on twisted coordinates pᵏᐟᵈ
## is a constant factor on pᵏ with d the twisting degree
## and so will be elminated. QED.
var v {.noInit.}: F
const b3 = 3 * F.C.getCoefB()
template A: untyped = line.x
template B: untyped = line.y
template C: untyped = line.z
A.prod(T.y, T.z) # A = Y.Z
C.square(T.x) # C = X²
v.square(T.y) # v = Y²
B.square(T.z) # B = Z²
A.double() # A = 2 Y.Z
A.neg() # A = -2 Y.Z
A *= SexticNonResidue # A = -2 ξ Y.Z
B *= b3 # B = 3b Z²
C *= 3 # C = 3X²
when F.C.getSexticTwist() == M_Twist:
B *= SexticNonResidue # B = 3b' Z² = 3bξ Z²
elif F.C.getSexticTwist() == D_Twist:
v *= SexticNonResidue # v = ξ Y²
C *= SexticNonResidue # C = 3ξ X²
else:
{.error: "unreachable".}
B -= v # B = 3bξ Z² - Y² (M-twist)
# B = 3b Z² - ξ Y² (D-twist)
func line_eval_add[F](
line: var Line[F],
T: ECP_ShortW_Prj[F, G2],
Q: ECP_ShortW_Aff[F, G2]) =
## Evaluate the line function for addition
## i.e. the line between T and Q
##
## With T in homogenous projective coordinates (X, Y, Z)
## And ξ the sextic non residue to construct the towering
##
## M-Twist:
## A = ξ (X₁ - Z₁X₂)
## B = (Y₁ - Z₁Y₂) X₂ - (X₁ - Z₁X₂) Y₂
## C = - (Y₁ - Z₁Y₂)
##
## D-Twist:
## A = X₁ - Z₁X₂
## B = (Y₁ - Z₁Y₂) X₂ - (X₁ - Z₁X₂) Y₂
## C = - (Y₁ - Z₁Y₂)
##
## Note: There is no need for complete formula as
## we have T ∉ [Q, -Q] in the Miller loop doubling-and-add
## i.e. the line cannot be vertical
var v {.noInit.}: F
template A: untyped = line.x
template B: untyped = line.y
template C: untyped = line.z
v.prod(T.z, Q.y) # v = Z₁Y₂
B.prod(T.z, Q.x) # B = Z₁X₂
A.diff(T.x, B) # A = X₁-Z₁X₂
C.diff(T.y, v) # C = Y₁-Z₁Y₂
v.prod(A, Q.y) # v = (X₁-Z₁X₂) Y₂
B.prod(C, Q.x) # B = (Y₁-Z₁Y₂) X₂
B -= v # B = (Y₁-Z₁Y₂) X₂ - (X₁-Z₁X₂) Y₂
C.neg() # C = -(Y₁-Z₁Y₂)
when F.C.getSexticTwist() == M_Twist:
A *= SexticNonResidue # A = ξ (X₁ - Z₁X₂)
# Line for a doubling
# ===================
#
# With T in homogenous projective coordinates (X, Y, Z)
# And ξ the sextic non residue to construct the towering
#
# M-Twist:
# A = -2ξ Y.Z [w³]
# B = 3 X² [w²]
# C = 3bξ Z² - Y² [1]
#
# D-Twist may be scaled by ξ to avoid dividing by ξ:
# A = -2ξ Y.Z [1]
# C = 3ξ X² [w]
# B = 3b Z² - ξY² [w³]
#
# Instead of
# - equation 10 from The Real of pairing, Aranha et al, 2013
# - or chapter 3 from pairing Implementation Revisited, Scott 2019
# A = -2 Y.Z
# B = 3 X²
# C = 3b/ξ Z² - Y²
#
# Note: This tradeoff a division with 3 multiplication by a non-residue.
# This is interesting for ξ has a small norm, but
# BN254_Snarks for example is 9+𝑖
#
# A constant factor will be wiped by the final exponentiation
# as for all non-zero α ∈ GF(pᵐ)
# with
# - p odd prime
# - and gcd(α,pᵐ) = 1 (i.e. the extension field pᵐ is using irreducible polynomials)
#
# Little Fermat holds and we have
# α^(pᵐ - 1) ≡ 1 (mod pᵐ)
#
# The final exponent is of the form
# (pᵏ-1)/r
#
# A constant factor on twisted coordinates pᵏᐟᵈ
# is a constant factor on pᵏ with d the twisting degree
# and so will be elminated. QED.
#
# Line for an addition
# ====================
#
# With T in homogenous projective coordinates (X, Y, Z)
# And ξ the sextic non residue to construct the towering
#
# M-Twist:
# A = X₁ - Z₁X₂
# B = - (Y₁ - Z₁Y₂)
# C = (Y₁ - Z₁Y₂) X₂ - (X₁ - Z₁X₂) Y₂
#
# D-Twist:
# A = X₁ - Z₁X₂
# B = - (Y₁ - Z₁Y₂)
# C = (Y₁ - Z₁Y₂) X₂ - (X₁ - Z₁X₂) Y₂
#
# Note: There is no need for complete formula as
# we have T ∉ [Q, -Q] in the Miller loop doubling-and-add
# i.e. the line cannot be vertical
func line_eval_fused_double[Field](
line: var Line[Field],
T: var ECP_ShortW_Prj[Field, G2]) =
## Fused line evaluation and elliptic point doubling
# Grewal et al, 2012 adapted to Scott 2019 line notation
var A {.noInit.}, B {.noInit.}, C {.noInit.}: Field
var E {.noInit.}, F {.noInit.}, G {.noInit.}: Field
template H: untyped = line.x
const b3 = 3*Field.C.getCoefB()
var snrY = T.y
when Field.C.getSexticTwist() == D_Twist:
snrY *= SexticNonResidue
A.prod(T.x, snrY)
template H: untyped = line.a
template I: untyped = line.b
template J: untyped = line.c
A.prod(T.x, T.y)
A.div2() # A = XY/2
B.square(T.y) # B = Y²
C.square(T.z) # C = Z²
var snrB = B
when Field.C.getSexticTwist() == D_Twist:
snrB *= SexticNonResidue
# E = 3b'Z² = 3bξ Z² (M-Twist) or 3b/ξ Z² (D-Twist)
when Field.C.getSexticTwist() == M_Twist and E.fromComplexExtension():
const b3 = 3*Field.C.getCoefB()
E.prod(C, b3)
E *= SexticNonResidue
else:
E = C
E.mulCheckSparse(Field.C.getCoefB_G2_times_3())
E.prod(C, b3)
when Field.C.getSexticTwist() == M_Twist:
E *= SexticNonResidue # E = 3b'Z² = 3bξ Z²
F.prod(E, 3) # F = 3E = 9bZ²
G.sum(snrB, F)
F.prod(E, 3) # F = 3E = 9b'Z²
G.sum(B, F)
G.div2() # G = (B+F)/2
H.sum(T.y, T.z)
H.square()
H -= B
H -= C # lx = H = (Y+Z)²-(B+C)= 2YZ
H -= C # H = (Y+Z)²-(B+C)= 2YZ
line.z.square(T.x)
line.z *= 3 # lz = 3X²
when Field.C.getSexticTwist() == D_Twist:
line.z *= SexticNonResidue
I.square(T.x)
I *= 3 # I = 3X²
line.y.diff(E, snrB) # ly = E-B = 3b'Z² - Y²
J.diff(E, B) # J = E-B = 3b'Z² - Y²
# In-place modification: invalidates `T.` calls
T.x.diff(snrB, F)
T.x.diff(B, F)
T.x *= A # X₃ = A(B-F) = XY/2.(Y²-9b'Z²)
# M-twist: XY/2.(Y²-9bξZ²)
# D-Twist: ξXY/2.(Y²ξ-9bZ²)
T.y.square(G)
E.square()
E *= 3
T.y -= E # Y₃ = G² - 3E² = (Y²+9b'Z²)²/4 - 3*(3b'Z²)²
# M-twist: (Y²+9bξZ²)²/4 - 3*(3bξZ²)²
# D-Twist: (ξY²+9bZ²)²/4 - 3*(3bZ²)²
when Field.C.getSexticTwist() == D_Twist:
H *= SexticNonResidue
T.z.prod(snrB, H) # Z₃ = BH = Y²((Y+Z)² - (Y²+Z²)) = 2Y³Z
# M-twist: 2Y³Z
# D-twist: 2ξ²Y³Z
# Correction for Fp4 towering
H.neg() # lx = -H
when Field.C.getSexticTwist() == M_Twist:
H *= SexticNonResidue
# else: the SNR is already integrated in H
T.z.prod(B, H) # Z₃ = BH = Y²((Y+Z)² - (Y²+Z²)) = 2Y³Z
H.neg()
func line_eval_fused_add[Field](
line: var Line[Field],
@ -350,13 +295,13 @@ func line_eval_fused_add[Field](
H {.noInit.}: Field
I {.noInit.}: Field
template lambda: untyped = line.x
template theta: untyped = line.z
template J: untyped = line.y
template lambda: untyped = line.a
template theta: untyped = line.b
template J: untyped = line.c
A.prod(Q.y, T.z)
B.prod(Q.x, T.z)
theta.diff(T.y, A) # θ = Y₁ - Z₁X
theta.diff(T.y, A) # θ = Y₁ - Z₁Y
lambda.diff(T.x, B) # λ = X₁ - Z₁X₂
C.square(theta)
D.square(lambda)
@ -383,8 +328,6 @@ func line_eval_fused_add[Field](
# Line evaluation
theta.neg()
when Field.C.getSexticTwist() == M_Twist:
lambda *= SexticNonResidue # A = ξ (X₁ - Z₁X₂)
# Public line evaluation procedures
# -----------------------------------------------------------------------------
@ -398,13 +341,8 @@ func line_double*[F1, F2](
##
## Compute lt,t(P)
static: doAssert F1.C == F2.C
when true:
line_eval_fused_double(line, T)
line.line_update(P)
else:
line_eval_double(line, T)
line.line_update(P)
T.double()
line_eval_fused_double(line, T)
line.line_update(P)
func line_add*[F1, F2](
line: var Line[F2],
@ -416,14 +354,8 @@ func line_add*[F1, F2](
##
## Compute lt,q(P)
static: doAssert F1.C == F2.C
when true:
line_eval_fused_add(line, T, Q)
line.line_update(P)
else:
line_eval_add(line, T, Q)
line.line_update(P)
T += Q
line_eval_fused_add(line, T, Q)
line.line_update(P)
# ############################################################
#
@ -461,7 +393,7 @@ func line_add*[F1, F2](
func mul_by_line_xy0*[Fpkdiv2, Fpkdiv6](
r: var Fpkdiv2,
a: Fpkdiv2,
b: Line[Fpkdiv6]) =
x, y: Fpkdiv6) =
## Sparse multiplication of an 𝔽pᵏᐟ² element
## with coordinates (a₀, a₁, a₂) by a line (x, y, 0)
## The z coordinates in the line will be ignored.
@ -475,26 +407,27 @@ func mul_by_line_xy0*[Fpkdiv2, Fpkdiv6](
v0 {.noInit.}: Fpkdiv6
v1 {.noInit.}: Fpkdiv6
v0.prod(a.c0, b.x)
v1.prod(a.c1, b.y)
r.c0.prod(a.c2, b.y)
v0.prod(a.c0, x)
v1.prod(a.c1, y)
r.c0.prod(a.c2, y)
r.c0 *= SexticNonResidue
r.c0 += v0
r.c1.sum(a.c0, a.c1) # Error when r and a alias as r.c0 was updated
r.c2.sum(b.x, b.y)
r.c2.sum(x, y)
r.c1 *= r.c2
r.c1 -= v0
r.c1 -= v1
r.c2.prod(a.c2, b.x)
r.c2.prod(a.c2, x)
r.c2 += v1
func mul_sparse_by_line_xy00z0*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
func mul_sparse_by_line_ab00c0*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
## Sparse multiplication of an 𝔽pᵏ element
## by a sparse 𝔽pᵏ element coming from an D-Twist line function.
## by a sparse 𝔽pᵏ element coming from an D-Twist line function
## With a quadratic over cubic towering (Fp2 -> Fp6 -> Fp12)
## The sparse element is represented by a packed Line type
## with coordinate (x,y,z) matching 𝔽pᵏ coordinates xy00z0
## with coordinate (a,b,c) matching 𝔽pᵏ coordinates ab00c0
static:
doAssert Fpk.C.getSexticTwist() == D_Twist
@ -509,13 +442,13 @@ func mul_sparse_by_line_xy00z0*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
v2 {.noInit.}: Line[Fpkdiv6]
v3 {.noInit.}: Fpkdiv2
v0.mul_by_line_xy0(f.c0, l)
v1.mul_sparse_by_0y0(f.c1, l.z)
v0.mul_by_line_xy0(f.c0, l.a, l.b)
v1.mul_sparse_by_0y0(f.c1, l.c)
v2.x = l.x
v2.y.sum(l.y, l.z)
v2.x = l.a
v2.y.sum(l.b, l.c)
f.c1 += f.c0
v3.mul_by_line_xy0(f.c1, v2)
v3.mul_by_line_xy0(f.c1, v2.x, v2.y)
v3 -= v0
f.c1.diff(v3, v1)
@ -534,11 +467,12 @@ func mul_sparse_by_line_xy00z0*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
# D-Twist
# ------------------------------------------------------------
func mul_sparse_by_line_xyz000*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
func mul_sparse_by_line_acb000*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
## Sparse multiplication of an 𝔽pᵏ element
## by a sparse 𝔽pᵏ element coming from an D-Twist line function.
## with a cubic over quadratic towering (Fp2 -> Fp4 -> Fp12)
## The sparse element is represented by a packed Line type
## with coordinates (x,y,z) matching 𝔽pᵏ coordinates xyz000
## with coordinate (a,b,c) matching 𝔽pᵏ coordinates acb000
static:
doAssert Fpk.C.getSexticTwist() == D_Twist
@ -549,12 +483,12 @@ func mul_sparse_by_line_xyz000*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
# In the following equations (taken from cubic extension implementation)
# a = f
# b0 = (x, y)
# b1 = (z, 0)
# b0 = (a, c)
# b1 = (b, 0)
# b2 = (0, 0)
#
# v0 = a0 b0 = (f00, f01).(x, y)
# v1 = a1 b1 = (f10, f11).(z, 0)
# v0 = a0 b0 = (f00, f01).(a, c)
# v1 = a1 b1 = (f10, f11).(b, 0)
# v2 = a2 b2 = (f20, f21).(0, 0)
#
# r0 = ξ ((a1 + a2) * (b1 + b2) - v1 - v2) + v0
@ -566,25 +500,25 @@ func mul_sparse_by_line_xyz000*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
# = a0 b0 + a2 b0 - v0 + v1
# = a2 b0 + v1
when false:
var b0 {.noInit.}, v0{.noInit.}, v1{.noInit.}, t{.noInit.}: Fp4[C]
when Fpk.C.has_large_field_elem():
var b0 {.noInit.}, v0{.noInit.}, v1{.noInit.}, t{.noInit.}: Fpkdiv3
b0.c0 = l.x
b0.c1 = l.y
b0.c0 = l.a
b0.c1 = l.c
v0.prod(f.c0, b0)
v1.mul_sparse_by_x0(f.c1, l.z)
v1.mul_sparse_by_x0(f.c1, l.b)
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
f.c1 += f.c0 # r1 = a0 + a1
f.c1 += f.c0 # r1 = a0 + a1
t = b0
t.c0 += l.z # t = b0 + b1
f.c1 *= t # r2 = (a0 + a1)(b0 + b1)
t.c0 += l.b # t = b0 + b1
f.c1 *= t # r2 = (a0 + a1)(b0 + b1)
f.c1 -= v0
f.c1 -= v1 # r2 = (a0 + a1)(b0 + b1) - v0 - v1
f.c1 -= v1 # r2 = (a0 + a1)(b0 + b1) - v0 - v1
# r0 = ξ a2 b1 + v0
f.c0.mul_sparse_by_x0(f.c2, l.z)
f.c0.mul_sparse_by_x0(f.c2, l.b)
f.c0 *= SexticNonResidue
f.c0 += v0
@ -596,41 +530,41 @@ func mul_sparse_by_line_xyz000*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
var V0{.noInit.}, V1{.noInit.}, f2x{.noInit.}: doublePrec(Fpkdiv3)
var t{.noInit.}: Fpkdiv6
V0.prod2x_disjoint(f.c0, l.x, l.y)
V1.mul2x_sparse_by_x0(f.c1, l.z)
V0.prod2x_disjoint(f.c0, l.a, l.c)
V1.mul2x_sparse_by_x0(f.c1, l.b)
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
f.c1.sum(f.c1, f.c0)
t.sum(l.x, l.z) # b0 is (x, y)
f2x.prod2x_disjoint(f.c1, t, l.y) # b1 is (z, 0)
t.sum(l.a, l.b) # b0 is (x, y)
f2x.prod2x_disjoint(f.c1, t, l.c) # b1 is (z, 0)
f2x.diff2xMod(f2x, V0)
f2x.diff2xMod(f2x, V1)
f.c1.redc2x(f2x)
# r0 = ξ a2 b1 + v0
f2x.mul2x_sparse_by_x0(f.c2, l.z)
f2x.mul2x_sparse_by_x0(f.c2, l.b)
f2x.prod2x(f2x, SexticNonResidue)
f2x.sum2xMod(f2x, V0)
f.c0.redc2x(f2x)
# r2 = a2 b0 + v1
f2x.prod2x_disjoint(f.c2, l.x, l.y)
f2x.prod2x_disjoint(f.c2, l.a, l.c)
f2x.sum2xMod(f2x, V1)
f.c2.redc2x(f2x)
func prod_xyz000_xyz000_into_abcdefghij00*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Line[Fpkdiv6]) =
func prod_xzy000_xzy000_into_abcdefghij00*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Line[Fpkdiv6]) =
## Multiply 2 lines together
## The result is sparse in f.c1.c1
# In the following equations (taken from cubic extension implementation)
# a0 = (x0, y0)
# a1 = (z0, 0)
# a0 = (x0, z0)
# a1 = (y0, 0)
# a2 = ( 0, 0)
# b0 = (x1, y1)
# b1 = (z1, 0)
# b0 = (x1, z1)
# b1 = (y1, 0)
# b2 = ( 0, 0)
#
# v0 = a0 b0 = (x0, y0).(x1, y1)
# v1 = a1 b1 = (z0, 0).(z1, 0)
# v0 = a0 b0 = (x0, z0).(x1, z1)
# v1 = a1 b1 = (y0, 0).(y1, 0)
# v2 = a2 b2 = ( 0, 0).( 0, 0)
#
# r0 = ξ ((a1 + a2) * (b1 + b2) - v1 - v2) + v0
@ -652,13 +586,13 @@ func prod_xyz000_xyz000_into_abcdefghij00*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Lin
var V0{.noInit.}, f2x{.noInit.}: doublePrec(Fpkdiv3)
var V1{.noInit.}: doublePrec(Fpkdiv6)
V0.prod2x_disjoint(l0.x, l0.y, l1.x, l1.y) # a0 b0 = (x0, y0).(x1, y1)
V1.prod2x(l0.z, l1.z) # a1 b1 = (z0, 0).(z1, 0)
V0.prod2x_disjoint(l0.a, l0.c, l1.a, l1.c) # a0 b0 = (x0, z0).(x1, z1)
V1.prod2x(l0.b, l1.b) # a1 b1 = (y0, 0).(y1, 0)
# r1 = (a0 + a1) * (b0 + b1) - v0 - v1
f.c1.c0.sum(l0.x, l0.z) # x0 + z0
f.c1.c1.sum(l1.x, l1.z) # x1 + z1
f2x.prod2x_disjoint(f.c1.c0, l0.y, f.c1.c1, l1.y) # (x0 + z0, y0)(x1 + z1, y1) = (a0 + a1) * (b0 + b1)
f.c1.c0.sum(l0.a, l0.b) # x0 + y0
f.c1.c1.sum(l1.a, l1.b) # x1 + y1
f2x.prod2x_disjoint(f.c1.c0, l0.c, f.c1.c1, l1.c) # (x0 + y0, z0)(x1 + y1, z1) = (a0 + a1) * (b0 + b1)
f2x.diff2xMod(f2x, V0)
f2x.c0.diff2xMod(f2x.c0, V1)
f.c1.redc2x(f2x)
@ -744,25 +678,29 @@ func mul_sparse_by_abcdefghij00*[Fpk](
# M-Twist
# ------------------------------------------------------------
func mul_sparse_by_line_xy000z*[Fpk, Fpkdiv6](
f: var Fpk, l: Line[Fpkdiv6]) =
func mul_sparse_by_line_ca00b0*[Fpk, Fpkdiv6](f: var Fpk, l: Line[Fpkdiv6]) =
## Sparse multiplication of an 𝔽pᵏ element
## by a sparse 𝔽pᵏ element coming from an M-Twist line function
## with a cubic over quadratic towering (Fp2 -> Fp4 -> Fp12)
## The sparse element is represented by a packed Line type
## with coordinate (a,b,c) matching 𝔽pᵏ coordinates ca00b0
static:
doAssert Fpk.C.getSexticTwist() == M_Twist
doAssert f is CubicExt, "This assumes 𝔽pᵏ as a cubic extension of 𝔽pᵏᐟ³"
doAssert f.c0 is QuadraticExt, "This assumes 𝔽pᵏᐟ³ as a quadratic extension of 𝔽pᵏᐟ⁶"
doAssert f.c0 is QuadraticExt, "This assumes 𝔽pᵏᐟ³ as a cubic extension of 𝔽pᵏᐟ⁶"
type Fpkdiv3 = typeof(f.c0)
# In the following equations (taken from cubic extension implementation)
# a = f
# b0 = (x, y)
# b0 = (c, a)
# b1 = (0, 0)
# b2 = (0, z)
# b2 = (b, 0)
#
# v0 = a0 b0 = (f00, f01).(x, y)
# v0 = a0 b0 = (f00, f01).(c, a)
# v1 = a1 b1 = (f10, f11).(0, 0)
# v2 = a2 b2 = (f20, f21).(0, z)
# v2 = a2 b2 = (f20, f21).(b, 0)
#
# r0 = ξ ((a1 + a2) * (b1 + b2) - v1 - v2) + v0
# = ξ (a1 b2 + a2 b2 - v2) + v0
@ -773,25 +711,25 @@ func mul_sparse_by_line_xy000z*[Fpk, Fpkdiv6](
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2 + v1
# = (a0 + a2) * (b0 + b2) - v0 - v2
when false:
when Fpk.C.has_large_field_elem():
var b0 {.noInit.}, v0{.noInit.}, v2{.noInit.}, t{.noInit.}: Fpkdiv3
b0.c0 = l.x
b0.c1 = l.y
b0.c0 = l.c
b0.c1 = l.a
v0.prod(f.c0, b0)
v2.mul_sparse_by_0y(f.c2, l.z)
v2.mul_sparse_by_x0(f.c2, l.b)
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
f.c2 += f.c0 # r2 = a0 + a2
t = b0
t.c1 += l.z # t = b0 + b2
t.c0 += l.b # t = b0 + b2
f.c2 *= t # r2 = (a0 + a2)(b0 + b2)
f.c2 -= v0
f.c2 -= v2 # r2 = (a0 + a2)(b0 + b2) - v0 - v2
# r0 = ξ a1 b2 + v0
f.c0.mul_sparse_by_0y(f.c1, l.z)
f.c0.mul_sparse_by_x0(f.c1, l.b)
f.c0 *= SexticNonResidue
f.c0 += v0
@ -804,43 +742,43 @@ func mul_sparse_by_line_xy000z*[Fpk, Fpkdiv6](
var V0{.noInit.}, V2{.noInit.}, f2x{.noInit.}: doublePrec(Fpkdiv3)
var t{.noInit.}: Fpkdiv6
V0.prod2x_disjoint(f.c0, l.x, l.y)
V2.mul2x_sparse_by_0y(f.c2, l.z)
V0.prod2x_disjoint(f.c0, l.c, l.a)
V2.mul2x_sparse_by_x0(f.c2, l.b)
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
f.c2.sum(f.c2, f.c0)
t.sum(l.y, l.z) # b0 is (x, y)
f2x.prod2x_disjoint(f.c2, l.x, t) # b2 is (0, z)
t.sum(l.c, l.b) # b0 + b2 = (c+b, a)
f2x.prod2x_disjoint(f.c2, t, l.a)
f2x.diff2xMod(f2x, V0)
f2x.diff2xMod(f2x, V2)
f.c2.redc2x(f2x)
# r0 = ξ a1 b2 + v0
f2x.mul2x_sparse_by_0y(f.c1, l.z)
f2x.mul2x_sparse_by_x0(f.c1, l.b)
f2x.prod2x(f2x, SexticNonResidue)
f2x.sum2xMod(f2x, V0)
f.c0.redc2x(f2x)
# r1 = a1 b0 + ξ v2
f2x.prod2x_disjoint(f.c1, l.x, l.y)
f2x.prod2x_disjoint(f.c1, l.c, l.a)
V2.prod2x(V2, SexticNonResidue)
f2x.sum2xMod(f2x, V2)
f.c1.redc2x(f2x)
func prod_xy000z_xy000z_into_abcd00efghij*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Line[Fpkdiv6]) =
func prod_zx00y0_zx00y0_into_abcd00efghij*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Line[Fpkdiv6]) =
## Multiply 2 lines together
## The result is sparse in f.c1.c0
## The result is sparse in f.c1.c1
# In the following equations (taken from cubic extension implementation)
# a0 = (x0, y0)
# a0 = (z0, x0)
# a1 = ( 0, 0)
# a2 = ( 0, z0)
# b0 = (x1, y1)
# a2 = (y0, 0)
# b0 = (z1, x1)
# b1 = ( 0, 0)
# b2 = ( 0, z1)
# b2 = (y0, 0)
#
# v0 = a0 b0 = (x0, y0).(x1, y1)
# v0 = a0 b0 = (z0, x0).(z1, x1)
# v1 = a1 b1 = ( 0, 0).( 0, 0)
# v2 = a2 b2 = ( 0, z0).( 0, z1)
# v2 = a2 b2 = (y0, 0).(y1, 0)
#
# r0 = ξ ((a1 + a2) * (b1 + b2) - v1 - v2) + v0
# = ξ (a1 b2 + a2 b2 - v2) + v0
@ -861,14 +799,13 @@ func prod_xy000z_xy000z_into_abcd00efghij*[Fpk, Fpkdiv6](f: var Fpk, l0, l1: Lin
var V0{.noInit.}, f2x{.noInit.}: doublePrec(Fpkdiv3)
var V2{.noInit.}: doublePrec(Fpkdiv6)
V0.prod2x_disjoint(l0.x, l0.y, l1.x, l1.y) # a0 b0 = (x0, y0).(x1, y1)
V2.prod2x(l0.z, l1.z) # a2 b2 = ( 0, z0).( 0, z1)
V2.prod2x(V2, NonResidue)
V0.prod2x_disjoint(l0.c, l0.a, l1.c, l1.a) # a0 b0 = (z0, x0).(z1, x1)
V2.prod2x(l0.b, l1.b) # a2 b2 = (y0, 0).(y1, 0)
# r2 = (a0 + a2) * (b0 + b2) - v0 - v2
f.c2.c0.sum(l0.y, l0.z) # y0 + z0
f.c2.c1.sum(l1.y, l1.z) # y1 + z1
f2x.prod2x_disjoint(l0.x, f.c2.c0, l1.x, f.c2.c1) # (x0, y0 + z0).(x1, y1 + z1) = (a0 + a2) * (b0 + b2)
f.c2.c0.sum(l0.b, l0.c) # y0 + z0
f.c2.c1.sum(l1.b, l1.c) # y1 + z1
f2x.prod2x_disjoint(f.c2.c0, l0.a, f.c2.c1, l1.a) # (z0 + y0, x0).(z1 + y1, x1) = (a0 + a2) * (b0 + b2)
f2x.diff2xMod(f2x, V0) # (a0 + a2) * (b0 + b2) - v0
f2x.c0.diff2xMod(f2x.c0, V2) # (a0 + a2) * (b0 + b2) - v0 - v2
f.c2.redc2x(f2x)
@ -955,34 +892,37 @@ func mul_sparse_by_abcd00efghij*[Fpk](
# ------------------------------------------------------------
func mul_by_line*[Fpk, Fpkdiv6](f: var Fpk, line: Line[Fpkdiv6]) {.inline.} =
## Multiply an element of Fp12 by a sparse line function (xyz000 or xy000z)
## Multiply an element of Fp12 by a sparse line function
when Fpk.C.getSexticTwist() == D_Twist:
f.mul_sparse_by_line_xyz000(line)
f.mul_sparse_by_line_acb000(line)
elif Fpk.C.getSexticTwist() == M_Twist:
f.mul_sparse_by_line_xy000z(line)
f.mul_sparse_by_line_ca00b0(line)
else:
{.error: "A line function assumes that the curve has a twist".}
func prod_from_2_lines*[Fpk, Fpkdiv6](f: var Fpk, line0, line1: Line[Fpkdiv6]) {.inline.} =
## Multiply 2 lines function (xyz000 or xy000z)
## Multiply 2 lines function
## and store the result in f
## f is overwritten
when Fpk.C.getSexticTwist() == D_Twist:
f.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
f.prod_xzy000_xzy000_into_abcdefghij00(line0, line1)
elif Fpk.C.getSexticTwist() == M_Twist:
f.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
f.prod_zx00y0_zx00y0_into_abcd00efghij(line0, line1)
else:
{.error: "A line function assumes that the curve has a twist".}
func mul_by_prod_of_2_lines*[Fpk](f: var Fpk, g: Fpk) {.inline.} =
## Multiply f by the somewhat sparse product of 2 lines
when Fpk.C.getSexticTwist() == D_Twist:
f.mul_sparse_by_abcdefghij00(g)
elif Fpk.C.getSexticTwist() == M_Twist:
f.mul_sparse_by_abcd00efghij(g)
else:
{.error: "A line function assumes that the curve has a twist".}
func mul_by_2_lines*[Fpk, Fpkdiv6](f: var Fpk, line0, line1: Line[Fpkdiv6]) {.inline.} =
## Multiply f*line0*line1 with lines (xyz000 or xy000z)
## Multiply f*line0*line1 with lines
## f is updated with the result
var t{.noInit.}: typeof(f)
when Fpk.C.getSexticTwist() == D_Twist:
t.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
f.mul_sparse_by_abcdefghij00(t)
elif Fpk.C.getSexticTwist() == M_Twist:
t.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
f.mul_sparse_by_abcd00efghij(t)
else:
{.error: "A line function assumes that the curve has a twist".}
var t{.noInit.}: Fpk
t.prod_from_2_lines(line0, line1)
f.mul_by_prod_of_2_lines(t)

View File

@ -129,6 +129,10 @@ def gen_coef_b_on_G2(curve_name, curve_config):
buf += field_to_nim(G2B, G2_field, curve_name)
buf += '\n'
buf += f'const {curve_name}_coefB_G2_times_3* = '
buf += field_to_nim(3*G2B, G2_field, curve_name)
buf += '\n'
return buf
# CLI
@ -156,17 +160,17 @@ if __name__ == "__main__":
else:
G2B = gen_coef_b_on_G2(curve, Curves)
with open(f'{curve.lower()}_precomputed_params.nim', 'w') as f:
with open(f'{curve.lower()}_constants.nim', 'w') as f:
f.write(copyright())
f.write('\n\n')
f.write(inspect.cleandoc("""
import
../config/curves,
../io/io_extfields
../io/[io_fields, io_extfields]
"""))
f.write('\n\n')
f.write(G2B)
print(f'Successfully created {curve.lower()}_precomputed_params.nim')
print(f'Successfully created {curve.lower()}_constants.nim')

View File

@ -94,12 +94,11 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
let x = rng.random_elem(Fp2[C], gen)
let y = rng.random_elem(Fp2[C], gen)
let b = Fp6[C](coords: [x, y, Fp2[C]()])
let line = Line[Fp2[C]](x: x, y: y)
var r {.noInit.}, r2 {.noInit.}: Fp6[C]
r.prod(a, b)
r2.mul_by_line_xy0(a, line)
r2.mul_by_line_xy0(a, x, y)
check: bool(r == r2)
@ -109,8 +108,8 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
test_fp6_xy0(curve, gen = Long01Sequence)
when Fp12[BN254_Snarks]().c0.typeof is Fp6:
test "Sparse 𝔽p12/𝔽p6 resulting from xy00z0 line function":
proc test_fp12_xy00z0(C: static Curve, gen: static RandomGen) =
test "Sparse 𝔽p12/𝔽p6 resulting from ab00c0 line function":
proc test_fp12_ab00c0(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var a = rng.random_elem(Fp12[C], gen)
var a2 = a
@ -119,14 +118,14 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y = rng.random_elem(Fp2[C], gen)
var z = rng.random_elem(Fp2[C], gen)
let line = Line[Fp2[C]](x: x, y: y, z: z)
let line = Line[Fp2[C]](a: x, b: y, c: z)
let b = Fp12[C](
c0: Fp6[C](coords: [ x, y, Fp2[C]()]),
c1: Fp6[C](coords: [Fp2[C](), z, Fp2[C]()])
)
a *= b
a2.mul_sparse_by_line_xy00z0(line)
a2.mul_sparse_by_line_ab00c0(line)
check: bool(a == a2)
@ -135,8 +134,8 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
test_fp12_xy00z0(curve, gen = HighHammingWeight)
test_fp12_xy00z0(curve, gen = Long01Sequence)
test "Sparse 𝔽p12/𝔽p6 resulting from xyz000 line function":
proc test_fp12_xyz000(C: static Curve, gen: static RandomGen) =
test "Sparse 𝔽p12/𝔽p6 resulting from acb000 line function":
proc test_fp12_acb000(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var a = rng.random_elem(Fp12[C], gen)
var a2 = a
@ -145,9 +144,9 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y = rng.random_elem(Fp2[C], gen)
var z = rng.random_elem(Fp2[C], gen)
let line = Line[Fp2[C]](x: x, y: y, z: z)
let line = Line[Fp2[C]](a: x, b: y, c: z)
let b = Fp12[C](
c0: Fp6[C](coords: [x, y, z])
c0: Fp6[C](coords: [x, z, y])
)
a *= b
@ -156,14 +155,14 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
check: bool(a == a2)
staticFor(curve, TestCurves):
test_fp12_xyz000(curve, gen = Uniform)
test_fp12_xyz000(curve, gen = HighHammingWeight)
test_fp12_xyz000(curve, gen = Long01Sequence)
test_fp12_acb000(curve, gen = Uniform)
test_fp12_acb000(curve, gen = HighHammingWeight)
test_fp12_acb000(curve, gen = Long01Sequence)
else:
static: doAssert Fp12[BN254_Snarks]().c0.typeof is Fp4
test "Sparse 𝔽p12/𝔽p4 resulting from xy000z line function (M-twist only)":
proc test_fp12_xy000z(C: static Curve, gen: static RandomGen) =
test "Sparse 𝔽p12/𝔽p4 resulting from ca00b0 line function (M-twist only)":
proc test_fp12_ca00b0(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == M_Twist:
for _ in 0 ..< Iters:
var a = rng.random_elem(Fp12[C], gen)
@ -173,27 +172,27 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y = rng.random_elem(Fp2[C], gen)
var z = rng.random_elem(Fp2[C], gen)
let line = Line[Fp2[C]](x: x, y: y, z: z)
let line = Line[Fp2[C]](a: x, b: y, c: z)
let b = Fp12[C](
coords: [
Fp4[C](coords: [x, y]),
Fp4[C](coords: [z, x]),
Fp4[C](),
Fp4[C](coords: [Fp2[C](), z])
Fp4[C](coords: [y, Fp2[C]()])
]
)
a *= b
a2.mul_sparse_by_line_xy000z(line)
a2.mul_sparse_by_line_ca00b0(line)
check: bool(a == a2)
staticFor(curve, TestCurves):
test_fp12_xy000z(curve, gen = Uniform)
test_fp12_xy000z(curve, gen = HighHammingWeight)
test_fp12_xy000z(curve, gen = Long01Sequence)
test_fp12_ca00b0(curve, gen = Uniform)
test_fp12_ca00b0(curve, gen = HighHammingWeight)
test_fp12_ca00b0(curve, gen = Long01Sequence)
test "Sparse 𝔽p12/𝔽p4 resulting from xyz000 line function (D-twist only)":
proc test_fp12_xyz000(C: static Curve, gen: static RandomGen) =
proc test_fp12_acb000(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == D_Twist:
for _ in 0 ..< Iters:
var a = rng.random_elem(Fp12[C], gen)
@ -203,39 +202,39 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y = rng.random_elem(Fp2[C], gen)
var z = rng.random_elem(Fp2[C], gen)
let line = Line[Fp2[C]](x: x, y: y, z: z)
let line = Line[Fp2[C]](a: x, b: y, c: z)
let b = Fp12[C](
coords: [
Fp4[C](coords: [x, y]),
Fp4[C](coords: [z, Fp2[C]()]),
Fp4[C](coords: [x, z]),
Fp4[C](coords: [y, Fp2[C]()]),
Fp4[C]()
]
)
a *= b
a2.mul_sparse_by_line_xyz000(line)
a2.mul_sparse_by_line_acb000(line)
check: bool(a == a2)
staticFor(curve, TestCurves):
test_fp12_xyz000(curve, gen = Uniform)
test_fp12_xyz000(curve, gen = HighHammingWeight)
test_fp12_xyz000(curve, gen = Long01Sequence)
test_fp12_acb000(curve, gen = Uniform)
test_fp12_acb000(curve, gen = HighHammingWeight)
test_fp12_acb000(curve, gen = Long01Sequence)
test "Somewhat-sparse 𝔽p12/𝔽p4 resulting from xy000z*xy000z line functions (M-twist only)":
proc test_fp12_xy000z_xy000z(C: static Curve, gen: static RandomGen) =
test "Somewhat-sparse 𝔽p12/𝔽p4 resulting from ca00b0*ca00b0 line functions (M-twist only)":
proc test_fp12_ca00b0_ca00b0(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == M_Twist:
for _ in 0 ..< Iters:
var x0 = rng.random_elem(Fp2[C], gen)
var y0 = rng.random_elem(Fp2[C], gen)
var z0 = rng.random_elem(Fp2[C], gen)
let line0 = Line[Fp2[C]](x: x0, y: y0, z: z0)
let line0 = Line[Fp2[C]](a: x0, b: y0, c: z0)
let f0 = Fp12[C](
coords: [
Fp4[C](coords: [x0, y0]),
Fp4[C](coords: [z0, x0]),
Fp4[C](),
Fp4[C](coords: [Fp2[C](), z0])
Fp4[C](coords: [y0, Fp2[C]()])
]
)
@ -243,12 +242,12 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y1 = rng.random_elem(Fp2[C], gen)
var z1 = rng.random_elem(Fp2[C], gen)
let line1 = Line[Fp2[C]](x: x1, y: y1, z: z1)
let line1 = Line[Fp2[C]](a: x1, b: y1, c: z1)
let f1 = Fp12[C](
coords: [
Fp4[C](coords: [x1, y1]),
Fp4[C](coords: [z1, x1]),
Fp4[C](),
Fp4[C](coords: [Fp2[C](), z1])
Fp4[C](coords: [y1, Fp2[C]()])
]
)
@ -256,23 +255,28 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
r.prod(f0, f1)
var rl: Fp12[C]
rl.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
rl.prod_zx00y0_zx00y0_into_abcd00efghij(line0, line1)
check: bool(r == rl)
test "Somewhat-sparse 𝔽p12/𝔽p4 resulting from xyz000*xyz000 line functions (D-twist only)":
proc test_fp12_xyz000_xyz000(C: static Curve, gen: static RandomGen) =
staticFor(curve, TestCurves):
test_fp12_ca00b0_ca00b0(curve, gen = Uniform)
test_fp12_ca00b0_ca00b0(curve, gen = HighHammingWeight)
test_fp12_ca00b0_ca00b0(curve, gen = Long01Sequence)
test "Somewhat-sparse 𝔽p12/𝔽p4 resulting from acb000*acb000 line functions (D-twist only)":
proc test_fp12_acb000_acb000(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == D_Twist:
for _ in 0 ..< Iters:
var x0 = rng.random_elem(Fp2[C], gen)
var y0 = rng.random_elem(Fp2[C], gen)
var z0 = rng.random_elem(Fp2[C], gen)
let line0 = Line[Fp2[C]](x: x0, y: y0, z: z0)
let line0 = Line[Fp2[C]](a: x0, b: y0, c: z0)
let f0 = Fp12[C](
coords: [
Fp4[C](coords: [x0, y0]),
Fp4[C](coords: [z0, Fp2[C]()]),
Fp4[C](coords: [x0, z0]),
Fp4[C](coords: [y0, Fp2[C]()]),
Fp4[C]()
]
)
@ -281,11 +285,11 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y1 = rng.random_elem(Fp2[C], gen)
var z1 = rng.random_elem(Fp2[C], gen)
let line1 = Line[Fp2[C]](x: x1, y: y1, z: z1)
let line1 = Line[Fp2[C]](a: x1, b: y1, c: z1)
let f1 = Fp12[C](
coords: [
Fp4[C](coords: [x1, y1]),
Fp4[C](coords: [z1, Fp2[C]()]),
Fp4[C](coords: [x1, z1]),
Fp4[C](coords: [y1, Fp2[C]()]),
Fp4[C]()
]
)
@ -294,16 +298,16 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
r.prod(f0, f1)
var rl: Fp12[C]
rl.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
rl.prod_xzy000_xzy000_into_abcdefghij00(line0, line1)
check: bool(r == rl)
staticFor(curve, TestCurves):
test_fp12_xyz000_xyz000(curve, gen = Uniform)
test_fp12_xyz000_xyz000(curve, gen = HighHammingWeight)
test_fp12_xyz000_xyz000(curve, gen = Long01Sequence)
test_fp12_acb000_acb000(curve, gen = Uniform)
test_fp12_acb000_acb000(curve, gen = HighHammingWeight)
test_fp12_acb000_acb000(curve, gen = Long01Sequence)
test "Somewhat-sparse 𝔽p12/𝔽p4 mul by the product (xyz000*xyz000) of line functions (D-twist only)":
test "Somewhat-sparse 𝔽p12/𝔽p4 mul by the product (acb000*acb000) of line functions (D-twist only)":
proc test_fp12_abcdefghij00(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == D_Twist:
for _ in 0 ..< Iters:
@ -311,11 +315,11 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y0 = rng.random_elem(Fp2[C], gen)
var z0 = rng.random_elem(Fp2[C], gen)
let line0 = Line[Fp2[C]](x: x0, y: y0, z: z0)
let line0 = Line[Fp2[C]](a: x0, b: y0, c: z0)
let f0 = Fp12[C](
coords: [
Fp4[C](coords: [x0, y0]),
Fp4[C](coords: [z0, Fp2[C]()]),
Fp4[C](coords: [x0, z0]),
Fp4[C](coords: [y0, Fp2[C]()]),
Fp4[C]()
]
)
@ -324,17 +328,20 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y1 = rng.random_elem(Fp2[C], gen)
var z1 = rng.random_elem(Fp2[C], gen)
let line1 = Line[Fp2[C]](x: x1, y: y1, z: z1)
let line1 = Line[Fp2[C]](a: x1, b: y1, c: z1)
let f1 = Fp12[C](
coords: [
Fp4[C](coords: [x1, y1]),
Fp4[C](coords: [z1, Fp2[C]()]),
Fp4[C](coords: [x1, z1]),
Fp4[C](coords: [y1, Fp2[C]()]),
Fp4[C]()
]
)
var r: Fp12[C]
r.prod(f0, f1)
var rl: Fp12[C]
rl.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
rl.prod_xzy000_xzy000_into_abcdefghij00(line0, line1)
var f = rng.random_elem(Fp12[C], gen)
var f2 = f
@ -349,20 +356,20 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
test_fp12_abcdefghij00(curve, gen = HighHammingWeight)
test_fp12_abcdefghij00(curve, gen = Long01Sequence)
test "Somewhat-sparse 𝔽p12/𝔽p4 mul by the product (xy000z*xy000z) of line functions (M-twist only)":
proc test_fp12_abcd00efghij(C: static Curve, gen: static RandomGen) =
test "Somewhat-sparse 𝔽p12/𝔽p4 mul by the product (ca00b0*ca00b0) of line functions (M-twist only)":
proc test_fp12_abcdef00ghij(C: static Curve, gen: static RandomGen) =
when C.getSexticTwist() == M_Twist:
for _ in 0 ..< Iters:
var x0 = rng.random_elem(Fp2[C], gen)
var y0 = rng.random_elem(Fp2[C], gen)
var z0 = rng.random_elem(Fp2[C], gen)
let line0 = Line[Fp2[C]](x: x0, y: y0, z: z0)
let line0 = Line[Fp2[C]](a: x0, b: y0, c: z0)
let f0 = Fp12[C](
coords: [
Fp4[C](coords: [x0, y0]),
Fp4[C](coords: [z0, x0]),
Fp4[C](),
Fp4[C](coords: [Fp2[C](), z0])
Fp4[C](coords: [y0, Fp2[C]()])
]
)
@ -370,17 +377,20 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
var y1 = rng.random_elem(Fp2[C], gen)
var z1 = rng.random_elem(Fp2[C], gen)
let line1 = Line[Fp2[C]](x: x1, y: y1, z: z1)
let line1 = Line[Fp2[C]](a: x1, b: y1, c: z1)
let f1 = Fp12[C](
coords: [
Fp4[C](coords: [x1, y1]),
Fp4[C](coords: [z1, x1]),
Fp4[C](),
Fp4[C](coords: [Fp2[C](), z1])
Fp4[C](coords: [y1, Fp2[C]()])
]
)
var r: Fp12[C]
r.prod(f0, f1)
var rl: Fp12[C]
rl.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
rl.prod_zx00y0_zx00y0_into_abcd00efghij(line0, line1)
var f = rng.random_elem(Fp12[C], gen)
var f2 = f
@ -391,6 +401,6 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
check: bool(f == f2)
staticFor(curve, TestCurves):
test_fp12_abcd00efghij(curve, gen = Uniform)
test_fp12_abcd00efghij(curve, gen = HighHammingWeight)
test_fp12_abcd00efghij(curve, gen = Long01Sequence)
test_fp12_abcdef00ghij(curve, gen = Uniform)
test_fp12_abcdef00ghij(curve, gen = HighHammingWeight)
test_fp12_abcdef00ghij(curve, gen = Long01Sequence)