nwaku/tests/v2/test_waku_rln_relay.nim

422 lines
15 KiB
Nim

{.used.}
import
chronos, chronicles, options, stint, unittest,
web3,
stew/byteutils, stew/shims/net as stewNet,
libp2p/crypto/crypto,
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils],
../../waku/v2/node/wakunode2,
../test_helpers,
test_utils
# the address of Ethereum client (ganache-cli for now)
# TODO this address in hardcoded in the code, we may need to take it as input from the user
const EthClient = "ws://localhost:8540/"
# poseidonHasherCode holds the bytecode of Poseidon hasher solidity smart contract:
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/crypto/PoseidonHasher.sol
# the solidity contract is compiled separately and the resultant bytecode is copied here
const poseidonHasherCode = readFile("tests/v2/poseidonHasher.txt")
# membershipContractCode contains the bytecode of the membership solidity smart contract:
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/RLN.sol
# the solidity contract is compiled separately and the resultant bytecode is copied here
const membershipContractCode = readFile("tests/v2/membershipContract.txt")
# the membership contract code in solidity
# uint256 public immutable MEMBERSHIP_DEPOSIT;
# uint256 public immutable DEPTH;
# uint256 public immutable SET_SIZE;
# uint256 public pubkeyIndex = 0;
# mapping(uint256 => uint256) public members;
# IPoseidonHasher public poseidonHasher;
# event MemberRegistered(uint256 indexed pubkey, uint256 indexed index);
# event MemberWithdrawn(uint256 indexed pubkey, uint256 indexed index);
# constructor(
# uint256 membershipDeposit,
# uint256 depth,
# address _poseidonHasher
# ) public {
# MEMBERSHIP_DEPOSIT = membershipDeposit;
# DEPTH = depth;
# SET_SIZE = 1 << depth;
# poseidonHasher = IPoseidonHasher(_poseidonHasher);
# }
# function register(uint256 pubkey) external payable {
# require(pubkeyIndex < SET_SIZE, "RLN, register: set is full");
# require(msg.value == MEMBERSHIP_DEPOSIT, "RLN, register: membership deposit is not satisfied");
# _register(pubkey);
# }
# function registerBatch(uint256[] calldata pubkeys) external payable {
# require(pubkeyIndex + pubkeys.length <= SET_SIZE, "RLN, registerBatch: set is full");
# require(msg.value == MEMBERSHIP_DEPOSIT * pubkeys.length, "RLN, registerBatch: membership deposit is not satisfied");
# for (uint256 i = 0; i < pubkeys.length; i++) {
# _register(pubkeys[i]);
# }
# }
# function withdrawBatch(
# uint256[] calldata secrets,
# uint256[] calldata pubkeyIndexes,
# address payable[] calldata receivers
# ) external {
# uint256 batchSize = secrets.length;
# require(batchSize != 0, "RLN, withdrawBatch: batch size zero");
# require(batchSize == pubkeyIndexes.length, "RLN, withdrawBatch: batch size mismatch pubkey indexes");
# require(batchSize == receivers.length, "RLN, withdrawBatch: batch size mismatch receivers");
# for (uint256 i = 0; i < batchSize; i++) {
# _withdraw(secrets[i], pubkeyIndexes[i], receivers[i]);
# }
# }
# function withdraw(
# uint256 secret,
# uint256 _pubkeyIndex,
# address payable receiver
# ) external {
# _withdraw(secret, _pubkeyIndex, receiver);
# }
contract(MembershipContract):
proc register(pubkey: Uint256) # external payable
# proc registerBatch(pubkeys: seq[Uint256]) # external payable
# TODO will add withdraw function after integrating the keyGeneration function (required to compute public keys from secret keys)
# proc withdraw(secret: Uint256, pubkeyIndex: Uint256, receiver: Address)
# proc withdrawBatch( secrets: seq[Uint256], pubkeyIndex: seq[Uint256], receiver: seq[Address])
proc uploadContract(ethClientAddress: string): Future[Address] {.async.} =
let web3 = await newWeb3(ethClientAddress)
debug "web3 connected to", ethClientAddress
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add =web3.defaultAccount
debug "contract deployer account address ", add
var balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
debug "Initial account balance: ", balance
# deploy the poseidon hash first
let
hasherReceipt = await web3.deployContract(poseidonHasherCode)
hasherAddress = hasherReceipt.contractAddress.get
debug "hasher address: ", hasherAddress
# encode membership contract inputs to 32 bytes zero-padded
let
membershipFeeEncoded = encode(MembershipFee).data
depthEncoded = encode(Depth).data
hasherAddressEncoded = encode(hasherAddress).data
# this is the contract constructor input
contractInput = membershipFeeEncoded & depthEncoded & hasherAddressEncoded
debug "encoded membership fee: ", membershipFeeEncoded
debug "encoded depth: ", depthEncoded
debug "encoded hasher address: ", hasherAddressEncoded
debug "encoded contract input:" , contractInput
# deploy membership contract with its constructor inputs
let receipt = await web3.deployContract(membershipContractCode, contractInput = contractInput)
var contractAddress = receipt.contractAddress.get
debug "Address of the deployed membership contract: ", contractAddress
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
# debug "Account balance after the contract deployment: ", balance
await web3.close()
debug "disconnected from ", ethClientAddress
return contractAddress
procSuite "Waku rln relay":
asyncTest "contract membership":
let contractAddress = await uploadContract(EthClient)
# connect to the eth client
let web3 = await newWeb3(EthClient)
debug "web3 connected to", EthClient
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add = web3.defaultAccount
debug "contract deployer account address ", add
# prepare a contract sender to interact with it
var sender = web3.contractSender(MembershipContract, contractAddress) # creates a Sender object with a web3 field and contract address of type Address
# send takes three parameters, c: ContractCallBase, value = 0.u256, gas = 3000000'u64 gasPrice = 0
# should use send proc for the contract functions that update the state of the contract
let tx = await sender.register(20.u256).send(value = MembershipFee)
debug "The hash of registration tx: ", tx # value is the membership fee
# var members: array[2, uint256] = [20.u256, 21.u256]
# debug "This is the batch registration result ", await sender.registerBatch(members).send(value = (members.len * membershipFee)) # value is the membership fee
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
# debug "Balance after registration: ", balance
await web3.close()
debug "disconnected from", EthClient
asyncTest "registration procedure":
# deploy the contract
let contractAddress = await uploadContract(EthClient)
# prepare rln-relay peer inputs
let
web3 = await newWeb3(EthClient)
accounts = await web3.provider.eth_accounts()
# choose one of the existing accounts for the rln-relay peer
ethAccountAddress = accounts[9]
await web3.close()
# create an RLN instance
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
# generate the membership keys
let membershipKeyPair = membershipKeyGen(ctxPtrPtr[])
check:
membershipKeyPair.isSome
# initialize the WakuRLNRelay
var rlnPeer = WakuRLNRelay(membershipKeyPair: membershipKeyPair.get(),
ethClientAddress: EthClient,
ethAccountAddress: ethAccountAddress,
membershipContractAddress: contractAddress)
# register the rln-relay peer to the membership contract
let is_successful = await rlnPeer.register()
check:
is_successful
asyncTest "mounting waku rln relay":
let
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
node = WakuNode.init(nodeKey, ValidIpAddress.init("0.0.0.0"),
Port(60000))
await node.start()
# deploy the contract
let membershipContractAddress = await uploadContract(EthClient)
# prepare rln-relay inputs
let
web3 = await newWeb3(EthClient)
accounts = await web3.provider.eth_accounts()
# choose one of the existing account for the rln-relay peer
ethAccountAddress = accounts[9]
await web3.close()
# start rln-relay
await node.mountRlnRelay(ethClientAddress = some(EthClient), ethAccountAddress = some(ethAccountAddress), membershipContractAddress = some(membershipContractAddress))
await node.stop()
suite "Waku rln relay":
test "key_gen Nim Wrappers":
var
merkleDepth: csize_t = 32
# parameters.key contains the parameters related to the Poseidon hasher
# to generate this file, clone this repo https://github.com/kilic/rln
# and run the following command in the root directory of the cloned project
# cargo run --example export_test_keys
# the file is generated separately and copied here
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
pbytes = parameters.toBytes()
len : csize_t = uint(pbytes.len)
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
check:
# check the parameters.key is not empty
pbytes.len != 0
# ctx holds the information that is going to be used for the key generation
var
obj = RLN[Bn256]()
objPtr = addr(obj)
objptrptr = addr(objPtr)
ctx = objptrptr
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer, ctx)
check:
# check whether the circuit parameters are generated successfully
res == true
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer : Buffer
keysBufferPtr = addr(keysBuffer)
done = key_gen(ctx[], keysBufferPtr)
check:
# check whether the keys are generated successfully
done == true
if done:
var generatedKeys = cast[ptr array[64, byte]](keysBufferPtr.`ptr`)[]
check:
# the public and secret keys together are 64 bytes
generatedKeys.len == 64
debug "generated keys: ", generatedKeys
test "membership Key Gen":
# create an RLN instance
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
var key = membershipKeyGen(ctxPtrPtr[])
var empty : array[32,byte]
check:
key.isSome
key.get().secretKey.len == 32
key.get().publicKey.len == 32
key.get().secretKey != empty
key.get().publicKey != empty
debug "the generated membership key pair: ", key
test "get_root Nim binding":
# create an RLN instance which also includes an empty Merkle tree
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
# read the Merkle Tree root
var
root1 {.noinit.} : Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(ctxPtrPtr[], rootPtr1)
doAssert(get_root_successful1)
doAssert(root1.len == 32)
# read the Merkle Tree root
var
root2 {.noinit.} : Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(ctxPtrPtr[], rootPtr2)
doAssert(get_root_successful2)
doAssert(root2.len == 32)
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
# the two roots must be identical
doAssert(rootHex1 == rootHex2)
test "update_next_member Nim Wrapper":
# create an RLN instance which also includes an empty Merkle tree
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
# generate a key pair
var keypair = membershipKeyGen(ctxPtrPtr[])
doAssert(keypair.isSome())
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
let pkBufferPtr = addr pkBuffer
# add the member to the tree
var member_is_added = update_next_member(ctxPtrPtr[], pkBufferPtr)
check:
member_is_added == true
test "delete_member Nim wrapper":
# create an RLN instance which also includes an empty Merkle tree
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
# delete the first member
var deleted_member_index = uint(0)
let deletion_success = delete_member(ctxPtrPtr[], deleted_member_index)
doAssert(deletion_success)
test "Merkle tree consistency check between deletion and insertion":
# create an RLN instance
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr)
doAssert(createRLNInstance(32, ctxPtrPtr))
# read the Merkle Tree root
var
root1 {.noinit.} : Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(ctxPtrPtr[], rootPtr1)
doAssert(get_root_successful1)
doAssert(root1.len == 32)
# generate a key pair
var keypair = membershipKeyGen(ctxPtrPtr[])
doAssert(keypair.isSome())
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
let pkBufferPtr = addr pkBuffer
# add the member to the tree
var member_is_added = update_next_member(ctxPtrPtr[], pkBufferPtr)
doAssert(member_is_added)
# read the Merkle Tree root after insertion
var
root2 {.noinit.} : Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(ctxPtrPtr[], rootPtr2)
doAssert(get_root_successful2)
doAssert(root2.len == 32)
# delete the first member
var deleted_member_index = uint(0)
let deletion_success = delete_member(ctxPtrPtr[], deleted_member_index)
doAssert(deletion_success)
# read the Merkle Tree root after the deletion
var
root3 {.noinit.} : Buffer = Buffer()
rootPtr3 = addr(root3)
get_root_successful3 = get_root(ctxPtrPtr[], rootPtr3)
doAssert(get_root_successful3)
doAssert(root3.len == 32)
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
debug "The initial root", rootHex1
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
debug "The root after insertion", rootHex2
var rootValue3 = cast[ptr array[32,byte]] (root3.`ptr`)
let rootHex3 = rootValue3[].toHex
debug "The root after deletion", rootHex3
# the root must change after the insertion
doAssert(not(rootHex1 == rootHex2))
## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion
doAssert(rootHex1 == rootHex3)