mirror of https://github.com/waku-org/nwaku.git
560 lines
20 KiB
Nim
560 lines
20 KiB
Nim
|
|
{.used.}
|
|
|
|
import
|
|
std/options,
|
|
testutils/unittests, chronos, chronicles, stint, web3,
|
|
stew/byteutils, stew/shims/net as stewNet,
|
|
libp2p/crypto/crypto,
|
|
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils, waku_rln_relay_types],
|
|
../../waku/v2/node/wakunode2,
|
|
../test_helpers,
|
|
./test_utils
|
|
|
|
|
|
# the address of Ethereum client (ganache-cli for now)
|
|
# TODO this address in hardcoded in the code, we may need to take it as input from the user
|
|
const EthClient = "ws://localhost:8540/"
|
|
|
|
# poseidonHasherCode holds the bytecode of Poseidon hasher solidity smart contract:
|
|
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/crypto/PoseidonHasher.sol
|
|
# the solidity contract is compiled separately and the resultant bytecode is copied here
|
|
const poseidonHasherCode = readFile("tests/v2/poseidonHasher.txt")
|
|
# membershipContractCode contains the bytecode of the membership solidity smart contract:
|
|
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/RLN.sol
|
|
# the solidity contract is compiled separately and the resultant bytecode is copied here
|
|
const membershipContractCode = readFile("tests/v2/membershipContract.txt")
|
|
|
|
# the membership contract code in solidity
|
|
# uint256 public immutable MEMBERSHIP_DEPOSIT;
|
|
# uint256 public immutable DEPTH;
|
|
# uint256 public immutable SET_SIZE;
|
|
# uint256 public pubkeyIndex = 0;
|
|
# mapping(uint256 => uint256) public members;
|
|
# IPoseidonHasher public poseidonHasher;
|
|
|
|
# event MemberRegistered(uint256 indexed pubkey, uint256 indexed index);
|
|
# event MemberWithdrawn(uint256 indexed pubkey, uint256 indexed index);
|
|
|
|
# constructor(
|
|
# uint256 membershipDeposit,
|
|
# uint256 depth,
|
|
# address _poseidonHasher
|
|
# ) public {
|
|
# MEMBERSHIP_DEPOSIT = membershipDeposit;
|
|
# DEPTH = depth;
|
|
# SET_SIZE = 1 << depth;
|
|
# poseidonHasher = IPoseidonHasher(_poseidonHasher);
|
|
# }
|
|
|
|
# function register(uint256 pubkey) external payable {
|
|
# require(pubkeyIndex < SET_SIZE, "RLN, register: set is full");
|
|
# require(msg.value == MEMBERSHIP_DEPOSIT, "RLN, register: membership deposit is not satisfied");
|
|
# _register(pubkey);
|
|
# }
|
|
|
|
# function registerBatch(uint256[] calldata pubkeys) external payable {
|
|
# require(pubkeyIndex + pubkeys.length <= SET_SIZE, "RLN, registerBatch: set is full");
|
|
# require(msg.value == MEMBERSHIP_DEPOSIT * pubkeys.length, "RLN, registerBatch: membership deposit is not satisfied");
|
|
# for (uint256 i = 0; i < pubkeys.length; i++) {
|
|
# _register(pubkeys[i]);
|
|
# }
|
|
# }
|
|
|
|
# function withdrawBatch(
|
|
# uint256[] calldata secrets,
|
|
# uint256[] calldata pubkeyIndexes,
|
|
# address payable[] calldata receivers
|
|
# ) external {
|
|
# uint256 batchSize = secrets.length;
|
|
# require(batchSize != 0, "RLN, withdrawBatch: batch size zero");
|
|
# require(batchSize == pubkeyIndexes.length, "RLN, withdrawBatch: batch size mismatch pubkey indexes");
|
|
# require(batchSize == receivers.length, "RLN, withdrawBatch: batch size mismatch receivers");
|
|
# for (uint256 i = 0; i < batchSize; i++) {
|
|
# _withdraw(secrets[i], pubkeyIndexes[i], receivers[i]);
|
|
# }
|
|
# }
|
|
|
|
# function withdraw(
|
|
# uint256 secret,
|
|
# uint256 _pubkeyIndex,
|
|
# address payable receiver
|
|
# ) external {
|
|
# _withdraw(secret, _pubkeyIndex, receiver);
|
|
# }
|
|
|
|
contract(MembershipContract):
|
|
proc register(pubkey: Uint256) # external payable
|
|
# proc registerBatch(pubkeys: seq[Uint256]) # external payable
|
|
# TODO will add withdraw function after integrating the keyGeneration function (required to compute public keys from secret keys)
|
|
# proc withdraw(secret: Uint256, pubkeyIndex: Uint256, receiver: Address)
|
|
# proc withdrawBatch( secrets: seq[Uint256], pubkeyIndex: seq[Uint256], receiver: seq[Address])
|
|
|
|
proc uploadContract(ethClientAddress: string): Future[Address] {.async.} =
|
|
let web3 = await newWeb3(ethClientAddress)
|
|
debug "web3 connected to", ethClientAddress
|
|
|
|
# fetch the list of registered accounts
|
|
let accounts = await web3.provider.eth_accounts()
|
|
web3.defaultAccount = accounts[1]
|
|
let add =web3.defaultAccount
|
|
debug "contract deployer account address ", add
|
|
|
|
var balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
debug "Initial account balance: ", balance
|
|
|
|
# deploy the poseidon hash first
|
|
let
|
|
hasherReceipt = await web3.deployContract(poseidonHasherCode)
|
|
hasherAddress = hasherReceipt.contractAddress.get
|
|
debug "hasher address: ", hasherAddress
|
|
|
|
|
|
# encode membership contract inputs to 32 bytes zero-padded
|
|
let
|
|
membershipFeeEncoded = encode(MembershipFee).data
|
|
depthEncoded = encode(Depth).data
|
|
hasherAddressEncoded = encode(hasherAddress).data
|
|
# this is the contract constructor input
|
|
contractInput = membershipFeeEncoded & depthEncoded & hasherAddressEncoded
|
|
|
|
|
|
debug "encoded membership fee: ", membershipFeeEncoded
|
|
debug "encoded depth: ", depthEncoded
|
|
debug "encoded hasher address: ", hasherAddressEncoded
|
|
debug "encoded contract input:" , contractInput
|
|
|
|
# deploy membership contract with its constructor inputs
|
|
let receipt = await web3.deployContract(membershipContractCode, contractInput = contractInput)
|
|
var contractAddress = receipt.contractAddress.get
|
|
debug "Address of the deployed membership contract: ", contractAddress
|
|
|
|
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
# debug "Account balance after the contract deployment: ", balance
|
|
|
|
await web3.close()
|
|
debug "disconnected from ", ethClientAddress
|
|
|
|
return contractAddress
|
|
|
|
procSuite "Waku rln relay":
|
|
asyncTest "contract membership":
|
|
let contractAddress = await uploadContract(EthClient)
|
|
# connect to the eth client
|
|
let web3 = await newWeb3(EthClient)
|
|
debug "web3 connected to", EthClient
|
|
|
|
# fetch the list of registered accounts
|
|
let accounts = await web3.provider.eth_accounts()
|
|
web3.defaultAccount = accounts[1]
|
|
let add = web3.defaultAccount
|
|
debug "contract deployer account address ", add
|
|
|
|
# prepare a contract sender to interact with it
|
|
var sender = web3.contractSender(MembershipContract, contractAddress) # creates a Sender object with a web3 field and contract address of type Address
|
|
|
|
# send takes three parameters, c: ContractCallBase, value = 0.u256, gas = 3000000'u64 gasPrice = 0
|
|
# should use send proc for the contract functions that update the state of the contract
|
|
let tx = await sender.register(20.u256).send(value = MembershipFee)
|
|
debug "The hash of registration tx: ", tx # value is the membership fee
|
|
|
|
# var members: array[2, uint256] = [20.u256, 21.u256]
|
|
# debug "This is the batch registration result ", await sender.registerBatch(members).send(value = (members.len * membershipFee)) # value is the membership fee
|
|
|
|
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
# debug "Balance after registration: ", balance
|
|
|
|
await web3.close()
|
|
debug "disconnected from", EthClient
|
|
|
|
asyncTest "registration procedure":
|
|
# deploy the contract
|
|
let contractAddress = await uploadContract(EthClient)
|
|
|
|
# prepare rln-relay peer inputs
|
|
let
|
|
web3 = await newWeb3(EthClient)
|
|
accounts = await web3.provider.eth_accounts()
|
|
# choose one of the existing accounts for the rln-relay peer
|
|
ethAccountAddress = accounts[9]
|
|
await web3.close()
|
|
|
|
# create an RLN instance
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# generate the membership keys
|
|
let membershipKeyPair = membershipKeyGen(ctxPtr)
|
|
|
|
check:
|
|
membershipKeyPair.isSome
|
|
|
|
# initialize the WakuRLNRelay
|
|
var rlnPeer = WakuRLNRelay(membershipKeyPair: membershipKeyPair.get(),
|
|
ethClientAddress: EthClient,
|
|
ethAccountAddress: ethAccountAddress,
|
|
membershipContractAddress: contractAddress)
|
|
|
|
# register the rln-relay peer to the membership contract
|
|
let is_successful = await rlnPeer.register()
|
|
check:
|
|
is_successful
|
|
asyncTest "mounting waku rln relay":
|
|
let
|
|
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
|
|
node = WakuNode.init(nodeKey, ValidIpAddress.init("0.0.0.0"),
|
|
Port(60000))
|
|
await node.start()
|
|
|
|
# deploy the contract
|
|
let membershipContractAddress = await uploadContract(EthClient)
|
|
|
|
# prepare rln-relay inputs
|
|
let
|
|
web3 = await newWeb3(EthClient)
|
|
accounts = await web3.provider.eth_accounts()
|
|
# choose one of the existing account for the rln-relay peer
|
|
ethAccountAddress = accounts[9]
|
|
await web3.close()
|
|
|
|
# start rln-relay
|
|
await node.mountRlnRelay(ethClientAddress = some(EthClient), ethAccountAddress = some(ethAccountAddress), membershipContractAddress = some(membershipContractAddress))
|
|
|
|
await node.stop()
|
|
|
|
|
|
suite "Waku rln relay":
|
|
test "key_gen Nim Wrappers":
|
|
var
|
|
merkleDepth: csize_t = 32
|
|
# parameters.key contains the parameters related to the Poseidon hasher
|
|
# to generate this file, clone this repo https://github.com/kilic/rln
|
|
# and run the following command in the root directory of the cloned project
|
|
# cargo run --example export_test_keys
|
|
# the file is generated separately and copied here
|
|
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
|
|
pbytes = parameters.toBytes()
|
|
len : csize_t = uint(pbytes.len)
|
|
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
|
|
check:
|
|
# check the parameters.key is not empty
|
|
pbytes.len != 0
|
|
|
|
# ctx holds the information that is going to be used for the key generation
|
|
var
|
|
obj = RLN[Bn256]()
|
|
objPtr = addr(obj)
|
|
objptrptr = addr(objPtr)
|
|
ctx = objptrptr
|
|
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer, ctx)
|
|
check:
|
|
# check whether the circuit parameters are generated successfully
|
|
res == true
|
|
|
|
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
|
|
var
|
|
keysBuffer : Buffer
|
|
keysBufferPtr = addr(keysBuffer)
|
|
done = key_gen(ctx[], keysBufferPtr)
|
|
check:
|
|
# check whether the keys are generated successfully
|
|
done == true
|
|
|
|
if done:
|
|
var generatedKeys = cast[ptr array[64, byte]](keysBufferPtr.`ptr`)[]
|
|
check:
|
|
# the public and secret keys together are 64 bytes
|
|
generatedKeys.len == 64
|
|
debug "generated keys: ", generatedKeys
|
|
|
|
test "membership Key Gen":
|
|
# create an RLN instance
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
var key = membershipKeyGen(ctxPtr)
|
|
var empty : array[32,byte]
|
|
check:
|
|
key.isSome
|
|
key.get().secretKey.len == 32
|
|
key.get().publicKey.len == 32
|
|
key.get().secretKey != empty
|
|
key.get().publicKey != empty
|
|
|
|
debug "the generated membership key pair: ", key
|
|
|
|
test "get_root Nim binding":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root1 {.noinit.} : Buffer = Buffer()
|
|
rootPtr1 = addr(root1)
|
|
get_root_successful1 = get_root(ctxPtr, rootPtr1)
|
|
doAssert(get_root_successful1)
|
|
doAssert(root1.len == 32)
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root2 {.noinit.} : Buffer = Buffer()
|
|
rootPtr2 = addr(root2)
|
|
get_root_successful2 = get_root(ctxPtr, rootPtr2)
|
|
doAssert(get_root_successful2)
|
|
doAssert(root2.len == 32)
|
|
|
|
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
|
|
let rootHex1 = rootValue1[].toHex
|
|
|
|
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
|
|
let rootHex2 = rootValue2[].toHex
|
|
|
|
# the two roots must be identical
|
|
doAssert(rootHex1 == rootHex2)
|
|
|
|
test "update_next_member Nim Wrapper":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# generate a key pair
|
|
var keypair = membershipKeyGen(ctxPtr)
|
|
doAssert(keypair.isSome())
|
|
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
|
|
let pkBufferPtr = addr pkBuffer
|
|
|
|
# add the member to the tree
|
|
var member_is_added = update_next_member(ctxPtr, pkBufferPtr)
|
|
check:
|
|
member_is_added == true
|
|
|
|
test "delete_member Nim wrapper":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# delete the first member
|
|
var deleted_member_index = uint(0)
|
|
let deletion_success = delete_member(ctxPtr, deleted_member_index)
|
|
doAssert(deletion_success)
|
|
|
|
test "Merkle tree consistency check between deletion and insertion":
|
|
# create an RLN instance
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root1 {.noinit.} : Buffer = Buffer()
|
|
rootPtr1 = addr(root1)
|
|
get_root_successful1 = get_root(ctxPtr, rootPtr1)
|
|
doAssert(get_root_successful1)
|
|
doAssert(root1.len == 32)
|
|
|
|
# generate a key pair
|
|
var keypair = membershipKeyGen(ctxPtr)
|
|
doAssert(keypair.isSome())
|
|
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
|
|
let pkBufferPtr = addr pkBuffer
|
|
|
|
# add the member to the tree
|
|
var member_is_added = update_next_member(ctxPtr, pkBufferPtr)
|
|
doAssert(member_is_added)
|
|
|
|
# read the Merkle Tree root after insertion
|
|
var
|
|
root2 {.noinit.} : Buffer = Buffer()
|
|
rootPtr2 = addr(root2)
|
|
get_root_successful2 = get_root(ctxPtr, rootPtr2)
|
|
doAssert(get_root_successful2)
|
|
doAssert(root2.len == 32)
|
|
|
|
# delete the first member
|
|
var deleted_member_index = uint(0)
|
|
let deletion_success = delete_member(ctxPtr, deleted_member_index)
|
|
doAssert(deletion_success)
|
|
|
|
# read the Merkle Tree root after the deletion
|
|
var
|
|
root3 {.noinit.} : Buffer = Buffer()
|
|
rootPtr3 = addr(root3)
|
|
get_root_successful3 = get_root(ctxPtr, rootPtr3)
|
|
doAssert(get_root_successful3)
|
|
doAssert(root3.len == 32)
|
|
|
|
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
|
|
let rootHex1 = rootValue1[].toHex
|
|
debug "The initial root", rootHex1
|
|
|
|
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
|
|
let rootHex2 = rootValue2[].toHex
|
|
debug "The root after insertion", rootHex2
|
|
|
|
var rootValue3 = cast[ptr array[32,byte]] (root3.`ptr`)
|
|
let rootHex3 = rootValue3[].toHex
|
|
debug "The root after deletion", rootHex3
|
|
|
|
# the root must change after the insertion
|
|
doAssert(not(rootHex1 == rootHex2))
|
|
|
|
## The initial root of the tree (empty tree) must be identical to
|
|
## the root of the tree after one insertion followed by a deletion
|
|
doAssert(rootHex1 == rootHex3)
|
|
test "hash Nim Wrappers":
|
|
# create an RLN instance
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
doAssert(createRLNInstance(30, ctxPtr))
|
|
|
|
# prepare the input
|
|
var
|
|
hashInput : array[32, byte]
|
|
for x in hashInput.mitems: x= 1
|
|
var
|
|
hashInputHex = hashInput.toHex()
|
|
hashInputBuffer = Buffer(`ptr`: addr hashInput[0], len: 32 )
|
|
|
|
debug "sample_hash_input_bytes", hashInputHex
|
|
|
|
# prepare other inputs to the hash function
|
|
var
|
|
outputBuffer: Buffer
|
|
numOfInputs = 1.uint # the number of hash inputs that can be 1 or 2
|
|
|
|
let hashSuccess = hash(ctxPtr, addr hashInputBuffer, numOfInputs, addr outputBuffer)
|
|
doAssert(hashSuccess)
|
|
let outputArr = cast[ptr array[32,byte]](outputBuffer.`ptr`)[]
|
|
doAssert("53a6338cdbf02f0563cec1898e354d0d272c8f98b606c538945c6f41ef101828" == outputArr.toHex())
|
|
|
|
var
|
|
hashOutput = cast[ptr array[32,byte]] (outputBuffer.`ptr`)[]
|
|
hashOutputHex = hashOutput.toHex()
|
|
|
|
debug "hash output", hashOutputHex
|
|
|
|
test "generate_proof and verify Nim Wrappers":
|
|
# create an RLN instance
|
|
var
|
|
ctx = RLN[Bn256]()
|
|
ctxPtr = addr(ctx)
|
|
|
|
# check if the rln instance is created successfully
|
|
doAssert(createRLNInstance(32, ctxPtr))
|
|
|
|
# create the membership key
|
|
var auth = membershipKeyGen(ctxPtr)
|
|
var skBuffer = Buffer(`ptr`: addr(auth.get().secretKey[0]), len: 32)
|
|
|
|
# peer's index in the Merkle Tree
|
|
var index = 5
|
|
|
|
# prepare the authentication object with peer's index and sk
|
|
var authObj: Auth = Auth(secret_buffer: addr skBuffer, index: uint(index))
|
|
|
|
# Create a Merkle tree with random members
|
|
for i in 0..10:
|
|
var member_is_added: bool = false
|
|
if (i == index):
|
|
# insert the current peer's pk
|
|
var pkBuffer = Buffer(`ptr`: addr(auth.get().publicKey[0]), len: 32)
|
|
member_is_added = update_next_member(ctxPtr, addr pkBuffer)
|
|
else:
|
|
var memberKeys = membershipKeyGen(ctxPtr)
|
|
var pkBuffer = Buffer(`ptr`: addr(memberKeys.get().publicKey[0]), len: 32)
|
|
member_is_added = update_next_member(ctxPtr, addr pkBuffer)
|
|
# check the member is added
|
|
doAssert(member_is_added)
|
|
|
|
# prepare the message
|
|
var messageBytes {.noinit.}: array[32, byte]
|
|
for x in messageBytes.mitems: x = 1
|
|
var messageHex = messageBytes.toHex()
|
|
debug "message", messageHex
|
|
|
|
# prepare the epoch
|
|
var epochBytes : array[32,byte]
|
|
for x in epochBytes.mitems : x = 0
|
|
var epochHex = epochBytes.toHex()
|
|
debug "epoch in bytes", epochHex
|
|
|
|
|
|
# serialize message and epoch
|
|
# TODO add a proc for serializing
|
|
var epochMessage = @epochBytes & @messageBytes
|
|
doAssert(epochMessage.len == 64)
|
|
var inputBytes{.noinit.}: array[64, byte] # holds epoch||Message
|
|
for (i, x) in inputBytes.mpairs: x = epochMessage[i]
|
|
var inputHex = inputBytes.toHex()
|
|
debug "serialized epoch and message ", inputHex
|
|
# put the serialized epoch||message into a buffer
|
|
var inputBuffer = Buffer(`ptr`: addr(inputBytes[0]), len: 64)
|
|
|
|
# generate the proof
|
|
var proof: Buffer
|
|
let proofIsSuccessful = generate_proof(ctxPtr, addr inputBuffer, addr authObj, addr proof)
|
|
# check whether the generate_proof call is done successfully
|
|
doAssert(proofIsSuccessful)
|
|
var proofValue = cast[ptr array[416,byte]] (proof.`ptr`)
|
|
let proofHex = proofValue[].toHex
|
|
debug "proof content", proofHex
|
|
|
|
# display the proof breakdown
|
|
var
|
|
zkSNARK = proofHex[0..511]
|
|
proofRoot = proofHex[512..575]
|
|
proofEpoch = proofHex[576..639]
|
|
shareX = proofHex[640..703]
|
|
shareY = proofHex[704..767]
|
|
nullifier = proofHex[768..831]
|
|
|
|
doAssert(zkSNARK.len == 512)
|
|
doAssert(proofRoot.len == 64)
|
|
doAssert(proofEpoch.len == 64)
|
|
doAssert(epochHex == proofEpoch)
|
|
doAssert(shareX.len == 64)
|
|
doAssert(shareY.len == 64)
|
|
doAssert(nullifier.len == 64)
|
|
|
|
debug "zkSNARK ", zkSNARK
|
|
debug "root ", proofRoot
|
|
debug "epoch ", proofEpoch
|
|
debug "shareX", shareX
|
|
debug "shareY", shareY
|
|
debug "nullifier", nullifier
|
|
|
|
var f = 0.uint32
|
|
let verifyIsSuccessful = verify(ctxPtr, addr proof, addr f)
|
|
doAssert(verifyIsSuccessful)
|
|
# f = 0 means the proof is verified
|
|
doAssert(f == 0)
|
|
|
|
# create and test a bad proof
|
|
# prepare a bad authentication object with a wrong peer's index
|
|
var badIndex = 8
|
|
var badAuthObj: Auth = Auth(secret_buffer: addr skBuffer, index: uint(badIndex))
|
|
var badProof: Buffer
|
|
let badProofIsSuccessful = generate_proof(ctxPtr, addr inputBuffer, addr badAuthObj, addr badProof)
|
|
# check whether the generate_proof call is done successfully
|
|
doAssert(badProofIsSuccessful)
|
|
|
|
var badF = 0.uint32
|
|
let badVerifyIsSuccessful = verify(ctxPtr, addr badProof, addr badF)
|
|
doAssert(badVerifyIsSuccessful)
|
|
# badF=1 means the proof is not verified
|
|
# verification of the bad proof should fail
|
|
doAssert(badF == 1)
|