1
0
mirror of https://github.com/waku-org/nwaku.git synced 2025-01-18 10:52:26 +00:00
nwaku/tests/test_waku_noise.nim

903 lines
32 KiB
Nim

{.used.}
import
testutils/unittests,
std/random,
std/tables,
stew/byteutils,
libp2p/crypto/chacha20poly1305,
libp2p/protobuf/minprotobuf,
stew/endians2
import
waku/[
utils/noise as waku_message_utils,
waku_noise/noise_types,
waku_noise/noise_utils,
waku_noise/noise,
waku_noise/noise_handshake_processing,
waku_core,
],
./testlib/common
procSuite "Waku Noise":
common.randomize()
test "PKCS#7 Padding/Unpadding":
# We test padding for different message lengths
let maxMessageLength = 3 * NoisePaddingBlockSize
for messageLen in 0 .. maxMessageLength:
let
message = randomSeqByte(rng[], messageLen)
padded = pkcs7_pad(message, NoisePaddingBlockSize)
unpadded = pkcs7_unpad(padded, NoisePaddingBlockSize)
check:
padded.len != 0
padded.len mod NoisePaddingBlockSize == 0
message == unpadded
test "ChaChaPoly Encryption/Decryption: random byte sequences":
let cipherState = randomChaChaPolyCipherState(rng[])
# We encrypt/decrypt random byte sequences
let
plaintext: seq[byte] = randomSeqByte(rng[], rand(1 .. 128))
ciphertext: ChaChaPolyCiphertext = encrypt(cipherState, plaintext)
decryptedCiphertext: seq[byte] = decrypt(cipherState, ciphertext)
check:
plaintext == decryptedCiphertext
test "ChaChaPoly Encryption/Decryption: random strings":
let cipherState = randomChaChaPolyCipherState(rng[])
# We encrypt/decrypt random strings
var plaintext: string
for _ in 1 .. rand(1 .. 128):
add(plaintext, char(rand(int('A') .. int('z'))))
let
ciphertext: ChaChaPolyCiphertext = encrypt(cipherState, plaintext.toBytes())
decryptedCiphertext: seq[byte] = decrypt(cipherState, ciphertext)
check:
plaintext.toBytes() == decryptedCiphertext
test "Noise public keys: encrypt and decrypt a public key":
let noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
let
cs: ChaChaPolyCipherState = randomChaChaPolyCipherState(rng[])
encryptedPk: NoisePublicKey = encryptNoisePublicKey(cs, noisePublicKey)
decryptedPk: NoisePublicKey = decryptNoisePublicKey(cs, encryptedPk)
check:
noisePublicKey == decryptedPk
test "Noise public keys: decrypt an unencrypted public key":
let noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
let
cs: ChaChaPolyCipherState = randomChaChaPolyCipherState(rng[])
decryptedPk: NoisePublicKey = decryptNoisePublicKey(cs, noisePublicKey)
check:
noisePublicKey == decryptedPk
test "Noise public keys: encrypt an encrypted public key":
let noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
let
cs: ChaChaPolyCipherState = randomChaChaPolyCipherState(rng[])
encryptedPk: NoisePublicKey = encryptNoisePublicKey(cs, noisePublicKey)
encryptedPk2: NoisePublicKey = encryptNoisePublicKey(cs, encryptedPk)
check:
encryptedPk == encryptedPk2
test "Noise public keys: encrypt, decrypt and decrypt a public key":
let noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
let
cs: ChaChaPolyCipherState = randomChaChaPolyCipherState(rng[])
encryptedPk: NoisePublicKey = encryptNoisePublicKey(cs, noisePublicKey)
decryptedPk: NoisePublicKey = decryptNoisePublicKey(cs, encryptedPk)
decryptedPk2: NoisePublicKey = decryptNoisePublicKey(cs, decryptedPk)
check:
decryptedPk == decryptedPk2
test "Noise public keys: serialize and deserialize an unencrypted public key":
let
noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
serializedNoisePublicKey: seq[byte] = serializeNoisePublicKey(noisePublicKey)
deserializedNoisePublicKey: NoisePublicKey =
intoNoisePublicKey(serializedNoisePublicKey)
check:
noisePublicKey == deserializedNoisePublicKey
test "Noise public keys: encrypt, serialize, deserialize and decrypt a public key":
let noisePublicKey: NoisePublicKey = genNoisePublicKey(rng[])
let
cs: ChaChaPolyCipherState = randomChaChaPolyCipherState(rng[])
encryptedPk: NoisePublicKey = encryptNoisePublicKey(cs, noisePublicKey)
serializedNoisePublicKey: seq[byte] = serializeNoisePublicKey(encryptedPk)
deserializedNoisePublicKey: NoisePublicKey =
intoNoisePublicKey(serializedNoisePublicKey)
decryptedPk: NoisePublicKey =
decryptNoisePublicKey(cs, deserializedNoisePublicKey)
check:
noisePublicKey == decryptedPk
test "PayloadV2: serialize/deserialize PayloadV2 to byte sequence":
let
payload2: PayloadV2 = randomPayloadV2(rng[])
serializedPayload = serializePayloadV2(payload2)
check:
serializedPayload.isOk()
let deserializedPayload = deserializePayloadV2(serializedPayload.get())
check:
deserializedPayload.isOk()
payload2 == deserializedPayload.get()
test "PayloadV2: Encode/Decode a Waku Message (version 2) to a PayloadV2":
# We encode to a WakuMessage a random PayloadV2
let
payload2 = randomPayloadV2(rng[])
msg = encodePayloadV2(payload2)
check:
msg.isOk()
# We create ProtoBuffer from WakuMessage
let pb = msg.get().encode()
# We decode the WakuMessage from the ProtoBuffer
let msgFromPb = WakuMessage.decode(pb.buffer)
check:
msgFromPb.isOk()
let decoded = decodePayloadV2(msgFromPb.get())
check:
decoded.isOk()
payload2 == decoded.get()
test "Noise State Machine: Diffie-Hellman operation":
#We generate random keypairs
let
aliceKey = genKeyPair(rng[])
bobKey = genKeyPair(rng[])
# A Diffie-Hellman operation between Alice's private key and Bob's public key must be equal to
# a Diffie-hellman operation between Alice's public key and Bob's private key
let
dh1 = dh(getPrivateKey(aliceKey), getPublicKey(bobKey))
dh2 = dh(getPrivateKey(bobKey), getPublicKey(aliceKey))
check:
dh1 == dh2
test "Noise State Machine: Cipher State primitives":
# We generate a random Cipher State, associated data ad and plaintext
var
cipherState: CipherState = randomCipherState(rng[])
nonce: uint64 = uint64(rand(0 .. int.high))
ad: seq[byte] = randomSeqByte(rng[], rand(1 .. 128))
plaintext: seq[byte] = randomSeqByte(rng[], rand(1 .. 128))
# We set the random nonce generated in the cipher state
setNonce(cipherState, nonce)
# We perform encryption
var ciphertext: seq[byte] = encryptWithAd(cipherState, ad, plaintext)
# After any encryption/decryption operation, the Cipher State's nonce increases by 1
check:
getNonce(cipherState) == nonce + 1
# We set the nonce back to its original value for decryption
setNonce(cipherState, nonce)
# We decrypt (using the original nonce)
var decrypted: seq[byte] = decryptWithAd(cipherState, ad, ciphertext)
# We check if encryption and decryption are correct and that nonce correctly increased after decryption
check:
getNonce(cipherState) == nonce + 1
plaintext == decrypted
# If a Cipher State has no key set, encryptWithAd should return the plaintext without increasing the nonce
setCipherStateKey(cipherState, EmptyKey)
nonce = getNonce(cipherState)
plaintext = randomSeqByte(rng[], rand(1 .. 128))
ciphertext = encryptWithAd(cipherState, ad, plaintext)
check:
ciphertext == plaintext
getNonce(cipherState) == nonce
# If a Cipher State has no key set, decryptWithAd should return the ciphertext without increasing the nonce
setCipherStateKey(cipherState, EmptyKey)
nonce = getNonce(cipherState)
# Note that we set ciphertext minimum length to 16 to not trigger checks on authentication tag length
ciphertext = randomSeqByte(rng[], rand(16 .. 128))
plaintext = decryptWithAd(cipherState, ad, ciphertext)
check:
ciphertext == plaintext
getNonce(cipherState) == nonce
# A Cipher State cannot have a nonce greater or equal 2^64-1
# Note that NonceMax is uint64.high - 1 = 2^64-1-1 and that nonce is increased after each encryption and decryption operation
# We generate a test Cipher State with nonce set to MaxNonce
cipherState = randomCipherState(rng[])
setNonce(cipherState, NonceMax)
plaintext = randomSeqByte(rng[], rand(1 .. 128))
# We test if encryption fails with a NoiseNonceMaxError error. Any subsequent encryption call over the Cipher State should fail similarly and leave the nonce unchanged
for _ in [1 .. 5]:
expect NoiseNonceMaxError:
ciphertext = encryptWithAd(cipherState, ad, plaintext)
check:
getNonce(cipherState) == NonceMax + 1
# We generate a test Cipher State
# Since nonce is increased after decryption as well, we need to generate a proper ciphertext in order to test MaxNonceError error handling
# We cannot call encryptWithAd to encrypt a plaintext using a nonce equal MaxNonce, since this will trigger a MaxNonceError.
# To perform such test, we then need to encrypt a test plaintext using directly ChaChaPoly primitive
cipherState = randomCipherState(rng[])
setNonce(cipherState, NonceMax)
plaintext = randomSeqByte(rng[], rand(1 .. 128))
# We perform encryption using the Cipher State key, NonceMax and ad
# By Noise specification the nonce is 8 bytes long out of the 12 bytes supported by ChaChaPoly, thus we copy the Little endian conversion of the nonce to a ChaChaPolyNonce
var
encNonce: ChaChaPolyNonce
authorizationTag: ChaChaPolyTag
encNonce[4 ..< 12] = toBytesLE(NonceMax)
ChaChaPoly.encrypt(getKey(cipherState), encNonce, authorizationTag, plaintext, ad)
# The output ciphertext is stored in the plaintext variable after ChaChaPoly.encrypt is called: we copy it along with the authorization tag.
ciphertext = @[]
ciphertext.add(plaintext)
ciphertext.add(authorizationTag)
# At this point ciphertext is a proper encryption of the original plaintext obtained with nonce equal to NonceMax
# We can now test if decryption fails with a NoiseNonceMaxError error. Any subsequent decryption call over the Cipher State should fail similarly and leave the nonce unchanged
# Note that decryptWithAd doesn't fail in decrypting the ciphertext (otherwise a NoiseDecryptTagError would have been triggered)
for _ in [1 .. 5]:
expect NoiseNonceMaxError:
plaintext = decryptWithAd(cipherState, ad, ciphertext)
check:
getNonce(cipherState) == NonceMax + 1
test "Noise State Machine: Symmetric State primitives":
# We select one supported handshake pattern and we initialize a symmetric state
var
hsPattern = NoiseHandshakePatterns["XX"]
symmetricState: SymmetricState = SymmetricState.init(hsPattern)
# We get all the Symmetric State field
# cs : Cipher State
# ck : chaining key
# h : handshake hash
var
cs = getCipherState(symmetricState)
ck = getChainingKey(symmetricState)
h = getHandshakeHash(symmetricState)
# When a Symmetric state is initialized, handshake hash and chaining key are (byte-wise) equal
check:
h.data.intoChaChaPolyKey == ck
########################################
# mixHash
########################################
# We generate a random byte sequence and execute a mixHash over it
mixHash(symmetricState, randomSeqByte(rng[], rand(1 .. 128)))
# mixHash changes only the handshake hash value of the Symmetric state
check:
cs == getCipherState(symmetricState)
ck == getChainingKey(symmetricState)
h != getHandshakeHash(symmetricState)
# We update test values
h = getHandshakeHash(symmetricState)
########################################
# mixKey
########################################
# We generate random input key material and we execute mixKey
var inputKeyMaterial = randomSeqByte(rng[], rand(1 .. 128))
mixKey(symmetricState, inputKeyMaterial)
# mixKey changes the Symmetric State's chaining key and encryption key of the embedded Cipher State
# It further sets to 0 the nonce of the embedded Cipher State
check:
getKey(cs) != getKey(getCipherState(symmetricState))
getNonce(getCipherState(symmetricState)) == 0.uint64
cs != getCipherState(symmetricState)
ck != getChainingKey(symmetricState)
h == getHandshakeHash(symmetricState)
# We update test values
cs = getCipherState(symmetricState)
ck = getChainingKey(symmetricState)
########################################
# mixKeyAndHash
########################################
# We generate random input key material and we execute mixKeyAndHash
inputKeyMaterial = randomSeqByte(rng[], rand(1 .. 128))
mixKeyAndHash(symmetricState, inputKeyMaterial)
# mixKeyAndHash executes a mixKey and a mixHash using the input key material
# All Symmetric State's fields are updated
check:
cs != getCipherState(symmetricState)
ck != getChainingKey(symmetricState)
h != getHandshakeHash(symmetricState)
# We update test values
cs = getCipherState(symmetricState)
ck = getChainingKey(symmetricState)
h = getHandshakeHash(symmetricState)
########################################
# encryptAndHash and decryptAndHash
########################################
# We store the initial symmetricState in order to correctly perform decryption
var initialSymmetricState = symmetricState
# We generate random plaintext and we execute encryptAndHash
var plaintext = randomChaChaPolyKey(rng[])
var nonce = getNonce(getCipherState(symmetricState))
var ciphertext = encryptAndHash(symmetricState, plaintext)
# encryptAndHash combines encryptWithAd and mixHash over the ciphertext (encryption increases the nonce of the embedded Cipher State but does not change its key)
# We check if only the handshake hash value and the Symmetric State changed accordingly
check:
cs != getCipherState(symmetricState)
getKey(cs) == getKey(getCipherState(symmetricState))
getNonce(getCipherState(symmetricState)) == nonce + 1
ck == getChainingKey(symmetricState)
h != getHandshakeHash(symmetricState)
# We restore the symmetric State to its initial value to test decryption
symmetricState = initialSymmetricState
# We execute decryptAndHash over the ciphertext
var decrypted = decryptAndHash(symmetricState, ciphertext)
# decryptAndHash combines decryptWithAd and mixHash over the ciphertext (encryption increases the nonce of the embedded Cipher State but does not change its key)
# We check if only the handshake hash value and the Symmetric State changed accordingly
# We further check if decryption corresponds to the original plaintext
check:
cs != getCipherState(symmetricState)
getKey(cs) == getKey(getCipherState(symmetricState))
getNonce(getCipherState(symmetricState)) == nonce + 1
ck == getChainingKey(symmetricState)
h != getHandshakeHash(symmetricState)
decrypted == plaintext
########################################
# split
########################################
# If at least one mixKey is executed (as above), ck is non-empty
check:
getChainingKey(symmetricState) != EmptyKey
# When a Symmetric State's ck is non-empty, we can execute split, which creates two distinct Cipher States cs1 and cs2
# with non-empty encryption keys and nonce set to 0
var (cs1, cs2) = split(symmetricState)
check:
getKey(cs1) != EmptyKey
getKey(cs2) != EmptyKey
getNonce(cs1) == 0.uint64
getNonce(cs2) == 0.uint64
getKey(cs1) != getKey(cs2)
test "Noise XX Handhshake and message encryption (extended test)":
let hsPattern = NoiseHandshakePatterns["XX"]
# We initialize Alice's and Bob's Handshake State
let aliceStaticKey = genKeyPair(rng[])
var aliceHS =
initialize(hsPattern = hsPattern, staticKey = aliceStaticKey, initiator = true)
let bobStaticKey = genKeyPair(rng[])
var bobHS = initialize(hsPattern = hsPattern, staticKey = bobStaticKey)
var
sentTransportMessage: seq[byte]
aliceStep, bobStep: HandshakeStepResult
# Here the handshake starts
# Write and read calls alternate between Alice and Bob: the handhshake progresses by alternatively calling stepHandshake for each user
###############
# 1st step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# By being the handshake initiator, Alice writes a Waku2 payload v2 containing her handshake message
# and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
###############
# 2nd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# At this step, Bob writes and returns a payload
bobStep = stepHandshake(rng[], bobHS, transportMessage = sentTransportMessage).get()
# While Alice reads and returns the (decrypted) transport message
aliceStep = stepHandshake(rng[], aliceHS, readPayloadV2 = bobStep.payload2).get()
check:
aliceStep.transportMessage == sentTransportMessage
###############
# 3rd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# Similarly as in first step, Alice writes a Waku2 payload containing the handshake message and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
# Note that for this handshake pattern, no more message patterns are left for processing
# Another call to stepHandshake would return an empty HandshakeStepResult
# We test that extra calls to stepHandshake do not affect parties' handshake states
# and that the intermediate HandshakeStepResult are empty
let prevAliceHS = aliceHS
let prevBobHS = bobHS
let bobStep1 =
stepHandshake(rng[], bobHS, transportMessage = sentTransportMessage).get()
let aliceStep1 =
stepHandshake(rng[], aliceHS, readPayloadV2 = bobStep1.payload2).get()
let aliceStep2 =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
let bobStep2 =
stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep2.payload2).get()
check:
aliceStep1 == default(HandshakeStepResult)
aliceStep2 == default(HandshakeStepResult)
bobStep1 == default(HandshakeStepResult)
bobStep2 == default(HandshakeStepResult)
aliceHS == prevAliceHS
bobHS == prevBobHS
#########################
# After Handshake
#########################
# We finalize the handshake to retrieve the Inbound/Outbound symmetric states
var aliceHSResult, bobHSResult: HandshakeResult
aliceHSResult = finalizeHandshake(aliceHS)
bobHSResult = finalizeHandshake(bobHS)
# We test read/write of random messages exchanged between Alice and Bob
var
payload2: PayloadV2
message: seq[byte]
readMessage: seq[byte]
defaultMessageNametagBuffer: MessageNametagBuffer
for _ in 0 .. 10:
# Alice writes to Bob
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(aliceHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(bobHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
# Bob writes to Alice
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(bobHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(aliceHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
test "Noise XXpsk0 Handhshake and message encryption (short test)":
let hsPattern = NoiseHandshakePatterns["XXpsk0"]
# We generate a random psk
let psk = randomSeqByte(rng[], 32)
# We initialize Alice's and Bob's Handshake State
let aliceStaticKey = genKeyPair(rng[])
var aliceHS = initialize(
hsPattern = hsPattern, staticKey = aliceStaticKey, psk = psk, initiator = true
)
let bobStaticKey = genKeyPair(rng[])
var bobHS = initialize(hsPattern = hsPattern, staticKey = bobStaticKey, psk = psk)
var
sentTransportMessage: seq[byte]
aliceStep, bobStep: HandshakeStepResult
# Here the handshake starts
# Write and read calls alternate between Alice and Bob: the handhshake progresses by alternatively calling stepHandshake for each user
###############
# 1st step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# By being the handshake initiator, Alice writes a Waku2 payload v2 containing her handshake message
# and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
###############
# 2nd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# At this step, Bob writes and returns a payload
bobStep = stepHandshake(rng[], bobHS, transportMessage = sentTransportMessage).get()
# While Alice reads and returns the (decrypted) transport message
aliceStep = stepHandshake(rng[], aliceHS, readPayloadV2 = bobStep.payload2).get()
check:
aliceStep.transportMessage == sentTransportMessage
###############
# 3rd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# Similarly as in first step, Alice writes a Waku2 payload containing the handshake message and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transportMessage alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
# Note that for this handshake pattern, no more message patterns are left for processing
#########################
# After Handshake
#########################
# We finalize the handshake to retrieve the Inbound/Outbound Symmetric States
var aliceHSResult, bobHSResult: HandshakeResult
aliceHSResult = finalizeHandshake(aliceHS)
bobHSResult = finalizeHandshake(bobHS)
# We test read/write of random messages exchanged between Alice and Bob
var
payload2: PayloadV2
message: seq[byte]
readMessage: seq[byte]
defaultMessageNametagBuffer: MessageNametagBuffer
for _ in 0 .. 10:
# Alice writes to Bob
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(aliceHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(bobHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
# Bob writes to Alice
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(bobHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(aliceHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
test "Noise K1K1 Handhshake and message encryption (short test)":
let hsPattern = NoiseHandshakePatterns["K1K1"]
# We initialize Alice's and Bob's Handshake State
let aliceStaticKey = genKeyPair(rng[])
let bobStaticKey = genKeyPair(rng[])
# This handshake has the following pre-message pattern:
# -> s
# <- s
# ...
# So we define accordingly the sequence of the pre-message public keys
let preMessagePKs: seq[NoisePublicKey] =
@[
toNoisePublicKey(getPublicKey(aliceStaticKey)),
toNoisePublicKey(getPublicKey(bobStaticKey)),
]
var aliceHS = initialize(
hsPattern = hsPattern,
staticKey = aliceStaticKey,
preMessagePKs = preMessagePKs,
initiator = true,
)
var bobHS = initialize(
hsPattern = hsPattern, staticKey = bobStaticKey, preMessagePKs = preMessagePKs
)
var
sentTransportMessage: seq[byte]
aliceStep, bobStep: HandshakeStepResult
# Here the handshake starts
# Write and read calls alternate between Alice and Bob: the handhshake progresses by alternatively calling stepHandshake for each user
###############
# 1st step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# By being the handshake initiator, Alice writes a Waku2 payload v2 containing her handshake message
# and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
###############
# 2nd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# At this step, Bob writes and returns a payload
bobStep = stepHandshake(rng[], bobHS, transportMessage = sentTransportMessage).get()
# While Alice reads and returns the (decrypted) transport message
aliceStep = stepHandshake(rng[], aliceHS, readPayloadV2 = bobStep.payload2).get()
check:
aliceStep.transportMessage == sentTransportMessage
###############
# 3rd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# Similarly as in first step, Alice writes a Waku2 payload containing the handshake_message and the (encrypted) transportMessage
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transportMessage alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
# Note that for this handshake pattern, no more message patterns are left for processing
#########################
# After Handshake
#########################
# We finalize the handshake to retrieve the Inbound/Outbound Symmetric States
var aliceHSResult, bobHSResult: HandshakeResult
aliceHSResult = finalizeHandshake(aliceHS)
bobHSResult = finalizeHandshake(bobHS)
# We test read/write of random messages between Alice and Bob
var
payload2: PayloadV2
message: seq[byte]
readMessage: seq[byte]
defaultMessageNametagBuffer: MessageNametagBuffer
for _ in 0 .. 10:
# Alice writes to Bob
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(aliceHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(bobHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
# Bob writes to Alice
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(bobHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(aliceHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
test "Noise XK1 Handhshake and message encryption (short test)":
let hsPattern = NoiseHandshakePatterns["XK1"]
# We initialize Alice's and Bob's Handshake State
let aliceStaticKey = genKeyPair(rng[])
let bobStaticKey = genKeyPair(rng[])
# This handshake has the following pre-message pattern:
# <- s
# ...
# So we define accordingly the sequence of the pre-message public keys
let preMessagePKs: seq[NoisePublicKey] =
@[toNoisePublicKey(getPublicKey(bobStaticKey))]
var aliceHS = initialize(
hsPattern = hsPattern,
staticKey = aliceStaticKey,
preMessagePKs = preMessagePKs,
initiator = true,
)
var bobHS = initialize(
hsPattern = hsPattern, staticKey = bobStaticKey, preMessagePKs = preMessagePKs
)
var
sentTransportMessage: seq[byte]
aliceStep, bobStep: HandshakeStepResult
# Here the handshake starts
# Write and read calls alternate between Alice and Bob: the handhshake progresses by alternatively calling stepHandshake for each user
###############
# 1st step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# By being the handshake initiator, Alice writes a Waku2 payload v2 containing her handshake message
# and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
###############
# 2nd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# At this step, Bob writes and returns a payload
bobStep = stepHandshake(rng[], bobHS, transportMessage = sentTransportMessage).get()
# While Alice reads and returns the (decrypted) transport message
aliceStep = stepHandshake(rng[], aliceHS, readPayloadV2 = bobStep.payload2).get()
check:
aliceStep.transportMessage == sentTransportMessage
###############
# 3rd step
###############
# We generate a random transport message
sentTransportMessage = randomSeqByte(rng[], 32)
# Similarly as in first step, Alice writes a Waku2 payload containing the handshake message and the (encrypted) transport message
aliceStep =
stepHandshake(rng[], aliceHS, transportMessage = sentTransportMessage).get()
# Bob reads Alice's payloads, and returns the (decrypted) transport message Alice sent to him
bobStep = stepHandshake(rng[], bobHS, readPayloadV2 = aliceStep.payload2).get()
check:
bobStep.transportMessage == sentTransportMessage
# Note that for this handshake pattern, no more message patterns are left for processing
#########################
# After Handshake
#########################
# We finalize the handshake to retrieve the Inbound/Outbound Symmetric States
var aliceHSResult, bobHSResult: HandshakeResult
aliceHSResult = finalizeHandshake(aliceHS)
bobHSResult = finalizeHandshake(bobHS)
# We test read/write of random messages exchanged between Alice and Bob
var
payload2: PayloadV2
message: seq[byte]
readMessage: seq[byte]
defaultMessageNametagBuffer: MessageNametagBuffer
for _ in 0 .. 10:
# Alice writes to Bob
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(aliceHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(bobHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage
# Bob writes to Alice
message = randomSeqByte(rng[], 32)
payload2 = writeMessage(bobHSResult, message, defaultMessageNametagBuffer)
readMessage =
readMessage(aliceHSResult, payload2, defaultMessageNametagBuffer).get()
check:
message == readMessage