nwaku/waku/waku_rln_relay/protocol_metrics.nim
2024-03-16 00:08:47 +01:00

107 lines
3.5 KiB
Nim

when (NimMajor, NimMinor) < (1, 4):
{.push raises: [Defect].}
else:
{.push raises: [].}
import
chronicles,
chronos,
metrics,
metrics/chronos_httpserver,
./constants,
../utils/collector
export metrics
logScope:
topics = "waku rln_relay"
func generateBucketsForHistogram*(length: int): seq[float64] =
## Generate a custom set of 5 buckets for a given length
let numberOfBuckets = 5
let stepSize = length / numberOfBuckets
var buckets: seq[float64]
for i in 1 .. numberOfBuckets:
buckets.add(stepSize * i.toFloat())
return buckets
declarePublicCounter(
waku_rln_messages_total, "number of messages published on the rln content topic"
)
declarePublicCounter(waku_rln_spam_messages_total, "number of spam messages detected")
declarePublicCounter(
waku_rln_invalid_messages_total, "number of invalid messages detected", ["type"]
)
# This metric will be useful in detecting the index of the root in the acceptable window of roots
declarePublicHistogram(
identifier = waku_rln_valid_messages_total,
help = "number of valid messages with their roots tracked",
buckets = generateBucketsForHistogram(AcceptableRootWindowSize),
)
declarePublicCounter(
waku_rln_errors_total,
"number of errors detected while operating the rln relay",
["type"],
)
declarePublicCounter(
waku_rln_proof_verification_total, "number of times the rln proofs are verified"
)
# this is a gauge so that we can set it based on the events we receive
declarePublicGauge(
waku_rln_number_registered_memberships,
"number of registered and active rln memberships",
)
# Timing metrics
declarePublicGauge(
waku_rln_proof_verification_duration_seconds, "time taken to verify a proof"
)
declarePublicGauge(
waku_rln_proof_generation_duration_seconds, "time taken to generate a proof"
)
declarePublicGauge(
waku_rln_instance_creation_duration_seconds, "time taken to create an rln instance"
)
declarePublicGauge(
waku_rln_membership_insertion_duration_seconds,
"time taken to insert a new member into the local merkle tree",
)
declarePublicGauge(
waku_rln_membership_credentials_import_duration_seconds,
"time taken to import membership credentials",
)
type RLNMetricsLogger = proc() {.gcsafe, raises: [Defect].}
proc getRlnMetricsLogger*(): RLNMetricsLogger =
var logMetrics: RLNMetricsLogger
var cumulativeErrors = 0.float64
var cumulativeMessages = 0.float64
var cumulativeSpamMessages = 0.float64
var cumulativeInvalidMessages = 0.float64
var cumulativeValidMessages = 0.float64
var cumulativeProofs = 0.float64
logMetrics = proc() =
{.gcsafe.}:
let freshErrorCount = parseAndAccumulate(waku_rln_errors_total, cumulativeErrors)
let freshMsgCount =
parseAndAccumulate(waku_rln_messages_total, cumulativeMessages)
let freshSpamCount =
parseAndAccumulate(waku_rln_spam_messages_total, cumulativeSpamMessages)
let freshInvalidMsgCount =
parseAndAccumulate(waku_rln_invalid_messages_total, cumulativeInvalidMessages)
let freshValidMsgCount =
parseAndAccumulate(waku_rln_valid_messages_total, cumulativeValidMessages)
let freshProofCount =
parseAndAccumulate(waku_rln_proof_verification_total, cumulativeProofs)
info "Total messages", count = freshMsgCount
info "Total spam messages", count = freshSpamCount
info "Total invalid messages", count = freshInvalidMsgCount
info "Total valid messages", count = freshValidMsgCount
info "Total errors", count = freshErrorCount
info "Total proofs verified", count = freshProofCount
return logMetrics