170 lines
5.4 KiB
Nim

# Stint
# Copyright 2018 Status Research & Development GmbH
# Licensed under either of
#
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
#
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import ./private/[bitops2_priv, datatypes]
export StInt, StUint
export IntImpl, intImpl, UintImpl, uintImpl, bitsof # TODO: remove the need to export those
type SomeBigInteger = StUint|StInt
import ./private/initialization
func zero*[bits: static[int]](T: typedesc[StUint[bits] or StInt[bits]]): T {.inline.} =
## Returns the zero of the input type
discard
func one*[bits: static[int]](T: typedesc[StUint[bits]]): T {.inline.} =
## Returns the one of the input type
result.data = one(type result.data)
import ./private/[int_addsub, uint_addsub]
func `+`*(x, y: SomeBigInteger): SomeBigInteger {.inline.} =
## Integer addition
result.data = x.data + y.data
func `+=`*(x: var SomeBigInteger, y: SomeBigInteger) {.inline.} =
## Integer addition
x.data += y.data
func `-`*(x, y: SomeBigInteger): SomeBigInteger {.inline.} =
## Integer substraction
result.data = x.data - y.data
func `-=`*(x: var SomeBigInteger, y: SomeBigInteger) {.inline.} =
## Integer substraction
x.data -= y.data
import ./private/int_negabs
func `-`*(x: StInt): StInt {.inline.} =
## Returns true if input is zero
## false otherwise
result.data = -x.data
func abs*(x: StInt): StInt {.inline.} =
## Returns true if input is zero
## false otherwise
result.data = abs(x.data)
import ./private/[int_mul, uint_mul]
func `*`*(x, y: SomeBigInteger): SomeBigInteger {.inline.} =
## Integer multiplication
result.data = x.data * y.data
import ./private/[int_div, uint_div]
func `div`*(x, y: SomeBigInteger): SomeBigInteger {.inline.} =
## Integer division
result.data = x.data div y.data
func `mod`*(x, y: SomeBigInteger): SomeBigInteger {.inline.} =
## Integer modulo
## This returns the remainder of x / y.
## i.e. x = y * quotient + remainder
result.data = x.data mod y.data
func divmod*(x, y: SomeBigInteger): tuple[quot, rem: SomeBigInteger] {.inline.} =
## Fused integer division and modulo
## Return both the quotient and remainder
## of x / y
(result.quot.data, result.rem.data) = divmod(x.data, y.data)
import ./private/[int_comparison, uint_comparison]
func `<`*(x, y: SomeBigInteger): bool {.inline.} =
## Unsigned `less than` comparison
x.data < y.data
func `<=`*(x, y: SomeBigInteger): bool {.inline.} =
## Unsigned `less or equal` comparison
x.data <= y.data
func `==`*(x, y: SomeBigInteger): bool {.inline.} =
## Unsigned `equal` comparison
x.data == y.data
export `<`, `<=`, `==` # Address Generic Instantiation too nested: https://github.com/status-im/nim-stint/pull/66#issuecomment-427557655
# TODO these exports are needed for the SomeInteger versions - move to stew?
export isZero, isOdd, isEven, isNegative
func isZero*(x: SomeBigInteger): bool {.inline.} =
## Returns true if input is zero
## false otherwise
x.data.isZero
func isNegative*(x: StInt): bool {.inline.} =
## Returns true if input is negative (< 0)
## false otherwise
x.data.isNegative
func isOdd*(x: SomeBigInteger): bool {.inline.} =
## Returns true if input is zero
## false otherwise
x.data.isOdd
func isEven*(x: SomeBigInteger): bool {.inline.} =
## Returns true if input is zero
## false otherwise
x.data.isEven
export isEven, isOdd
import ./private/[int_bitwise_ops, uint_bitwise_ops]
func `not`*(x: SomeBigInteger): SomeBigInteger {.inline.}=
## Bitwise `not` i.e. flips all bits of the input
result.data = x.data.not
func `or`*(x, y: SomeBigInteger): SomeBigInteger {.inline.}=
## Bitwise `or`
result.data = x.data or y.data
func `and`*(x, y: SomeBigInteger): SomeBigInteger {.inline.}=
## Bitwise `and`
result.data = x.data and y.data
func `xor`*(x, y: SomeBigInteger): SomeBigInteger {.inline.}=
## Bitwise `xor`
result.data = x.data xor y.data
func `shr`*(x: SomeBigInteger, y: SomeInteger): SomeBigInteger {.inline.} =
when x.data is SomeSignedInt:
when (NimMajor, NimMinor, NimPatch) >= (0, 20, 0):
result.data = x.data shr y
elif (NimMajor, NimMinor, NimPatch) < (0, 20, 0) and defined(nimAshr):
result.data = ashr(x.data, y)
else:
{.error: "arithmetic right shift is not defined for this Nim version".}
else:
result.data = x.data shr y
func `shl`*(x: SomeBigInteger, y: SomeInteger): SomeBigInteger {.inline.} =
result.data = x.data shl y
import ./private/[int_highlow, uint_highlow]
func high*[bits](_: typedesc[StInt[bits]]): StInt[bits] {.inline.} =
result.data = high(type result.data)
func high*[bits](_: typedesc[StUint[bits]]): StUint[bits] {.inline.} =
result.data = high(type result.data)
func low*[bits](_: typedesc[StInt[bits]]): StInt[bits] {.inline.} =
result.data = low(type result.data)
func low*[bits](_: typedesc[StUint[bits]]): StUint[bits] {.inline.} =
result.data = low(type result.data)
import ./private/uint_exp, math
func pow*(x: StUint, y: Natural): StUint {.inline.} =
## Returns x raised at the power of y
when x.data is UintImpl:
result.data = x.data.pow(y)
else:
result.data = x.data ^ y
func pow*(x: StUint, y: StUint): StUint {.inline.} =
## Returns x raised at the power of y
when x.data is UintImpl:
result.data = x.data.pow(y.data)
else:
result.data = x.data ^ y.data