mirror of
https://github.com/waku-org/nwaku.git
synced 2025-01-15 09:26:38 +00:00
903 lines
32 KiB
Nim
903 lines
32 KiB
Nim
|
|
{.used.}
|
|
|
|
import
|
|
std/options, sequtils, times,
|
|
testutils/unittests, chronos, chronicles, stint, web3,
|
|
stew/byteutils, stew/shims/net as stewNet,
|
|
libp2p/crypto/crypto,
|
|
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils, waku_rln_relay_types],
|
|
../../waku/v2/node/wakunode2,
|
|
../test_helpers,
|
|
./test_utils
|
|
|
|
const RLNRELAY_PUBSUB_TOPIC = "waku/2/rlnrelay/proto"
|
|
|
|
# POSEIDON_HASHER_CODE holds the bytecode of Poseidon hasher solidity smart contract:
|
|
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/crypto/PoseidonHasher.sol
|
|
# the solidity contract is compiled separately and the resultant bytecode is copied here
|
|
const POSEIDON_HASHER_CODE = readFile("tests/v2/poseidonHasher.txt")
|
|
# MEMBERSHIP_CONTRACT_CODE contains the bytecode of the membership solidity smart contract:
|
|
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/RLN.sol
|
|
# the solidity contract is compiled separately and the resultant bytecode is copied here
|
|
const MEMBERSHIP_CONTRACT_CODE = readFile("tests/v2/membershipContract.txt")
|
|
|
|
# the membership contract code in solidity
|
|
# uint256 public immutable MEMBERSHIP_DEPOSIT;
|
|
# uint256 public immutable DEPTH;
|
|
# uint256 public immutable SET_SIZE;
|
|
# uint256 public pubkeyIndex = 0;
|
|
# mapping(uint256 => uint256) public members;
|
|
# IPoseidonHasher public poseidonHasher;
|
|
|
|
# event MemberRegistered(uint256 indexed pubkey, uint256 indexed index);
|
|
# event MemberWithdrawn(uint256 indexed pubkey, uint256 indexed index);
|
|
|
|
# constructor(
|
|
# uint256 membershipDeposit,
|
|
# uint256 depth,
|
|
# address _poseidonHasher
|
|
# ) public {
|
|
# MEMBERSHIP_DEPOSIT = membershipDeposit;
|
|
# DEPTH = depth;
|
|
# SET_SIZE = 1 << depth;
|
|
# poseidonHasher = IPoseidonHasher(_poseidonHasher);
|
|
# }
|
|
|
|
# function register(uint256 pubkey) external payable {
|
|
# require(pubkeyIndex < SET_SIZE, "RLN, register: set is full");
|
|
# require(msg.value == MEMBERSHIP_DEPOSIT, "RLN, register: membership deposit is not satisfied");
|
|
# _register(pubkey);
|
|
# }
|
|
|
|
# function registerBatch(uint256[] calldata pubkeys) external payable {
|
|
# require(pubkeyIndex + pubkeys.length <= SET_SIZE, "RLN, registerBatch: set is full");
|
|
# require(msg.value == MEMBERSHIP_DEPOSIT * pubkeys.length, "RLN, registerBatch: membership deposit is not satisfied");
|
|
# for (uint256 i = 0; i < pubkeys.length; i++) {
|
|
# _register(pubkeys[i]);
|
|
# }
|
|
# }
|
|
|
|
# function withdrawBatch(
|
|
# uint256[] calldata secrets,
|
|
# uint256[] calldata pubkeyIndexes,
|
|
# address payable[] calldata receivers
|
|
# ) external {
|
|
# uint256 batchSize = secrets.length;
|
|
# require(batchSize != 0, "RLN, withdrawBatch: batch size zero");
|
|
# require(batchSize == pubkeyIndexes.length, "RLN, withdrawBatch: batch size mismatch pubkey indexes");
|
|
# require(batchSize == receivers.length, "RLN, withdrawBatch: batch size mismatch receivers");
|
|
# for (uint256 i = 0; i < batchSize; i++) {
|
|
# _withdraw(secrets[i], pubkeyIndexes[i], receivers[i]);
|
|
# }
|
|
# }
|
|
|
|
# function withdraw(
|
|
# uint256 secret,
|
|
# uint256 _pubkeyIndex,
|
|
# address payable receiver
|
|
# ) external {
|
|
# _withdraw(secret, _pubkeyIndex, receiver);
|
|
# }
|
|
|
|
|
|
contract(MembershipContract):
|
|
proc register(pubkey: Uint256) # external payable
|
|
# proc registerBatch(pubkeys: seq[Uint256]) # external payable
|
|
# TODO will add withdraw function after integrating the keyGeneration function (required to compute public keys from secret keys)
|
|
# proc withdraw(secret: Uint256, pubkeyIndex: Uint256, receiver: Address)
|
|
# proc withdrawBatch( secrets: seq[Uint256], pubkeyIndex: seq[Uint256], receiver: seq[Address])
|
|
|
|
proc uploadContract(ethClientAddress: string): Future[Address] {.async.} =
|
|
let web3 = await newWeb3(ethClientAddress)
|
|
debug "web3 connected to", ethClientAddress
|
|
|
|
# fetch the list of registered accounts
|
|
let accounts = await web3.provider.eth_accounts()
|
|
web3.defaultAccount = accounts[1]
|
|
let add =web3.defaultAccount
|
|
debug "contract deployer account address ", add
|
|
|
|
var balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
debug "Initial account balance: ", balance
|
|
|
|
# deploy the poseidon hash first
|
|
let
|
|
hasherReceipt = await web3.deployContract(POSEIDON_HASHER_CODE)
|
|
hasherAddress = hasherReceipt.contractAddress.get
|
|
debug "hasher address: ", hasherAddress
|
|
|
|
|
|
# encode membership contract inputs to 32 bytes zero-padded
|
|
let
|
|
membershipFeeEncoded = encode(MembershipFee).data
|
|
depthEncoded = encode(MERKLE_TREE_DEPTH.u256).data
|
|
hasherAddressEncoded = encode(hasherAddress).data
|
|
# this is the contract constructor input
|
|
contractInput = membershipFeeEncoded & depthEncoded & hasherAddressEncoded
|
|
|
|
|
|
debug "encoded membership fee: ", membershipFeeEncoded
|
|
debug "encoded depth: ", depthEncoded
|
|
debug "encoded hasher address: ", hasherAddressEncoded
|
|
debug "encoded contract input:" , contractInput
|
|
|
|
# deploy membership contract with its constructor inputs
|
|
let receipt = await web3.deployContract(MEMBERSHIP_CONTRACT_CODE, contractInput = contractInput)
|
|
var contractAddress = receipt.contractAddress.get
|
|
debug "Address of the deployed membership contract: ", contractAddress
|
|
|
|
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
# debug "Account balance after the contract deployment: ", balance
|
|
|
|
await web3.close()
|
|
debug "disconnected from ", ethClientAddress
|
|
|
|
return contractAddress
|
|
|
|
procSuite "Waku rln relay":
|
|
asyncTest "contract membership":
|
|
let contractAddress = await uploadContract(EthClient)
|
|
# connect to the eth client
|
|
let web3 = await newWeb3(EthClient)
|
|
debug "web3 connected to", EthClient
|
|
|
|
# fetch the list of registered accounts
|
|
let accounts = await web3.provider.eth_accounts()
|
|
web3.defaultAccount = accounts[1]
|
|
let add = web3.defaultAccount
|
|
debug "contract deployer account address ", add
|
|
|
|
# prepare a contract sender to interact with it
|
|
var sender = web3.contractSender(MembershipContract, contractAddress) # creates a Sender object with a web3 field and contract address of type Address
|
|
|
|
# send takes three parameters, c: ContractCallBase, value = 0.u256, gas = 3000000'u64 gasPrice = 0
|
|
# should use send proc for the contract functions that update the state of the contract
|
|
let tx = await sender.register(20.u256).send(value = MembershipFee)
|
|
debug "The hash of registration tx: ", tx # value is the membership fee
|
|
|
|
# var members: array[2, uint256] = [20.u256, 21.u256]
|
|
# debug "This is the batch registration result ", await sender.registerBatch(members).send(value = (members.len * membershipFee)) # value is the membership fee
|
|
|
|
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
|
|
# debug "Balance after registration: ", balance
|
|
|
|
await web3.close()
|
|
debug "disconnected from", EthClient
|
|
|
|
asyncTest "registration procedure":
|
|
# deploy the contract
|
|
let contractAddress = await uploadContract(EthClient)
|
|
|
|
# prepare rln-relay peer inputs
|
|
let
|
|
web3 = await newWeb3(EthClient)
|
|
accounts = await web3.provider.eth_accounts()
|
|
# choose one of the existing accounts for the rln-relay peer
|
|
ethAccountAddress = accounts[9]
|
|
await web3.close()
|
|
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check: rlnInstance.isOk == true
|
|
|
|
# generate the membership keys
|
|
let membershipKeyPair = membershipKeyGen(rlnInstance.value)
|
|
|
|
check: membershipKeyPair.isSome
|
|
|
|
# initialize the WakuRLNRelay
|
|
var rlnPeer = WakuRLNRelay(membershipKeyPair: membershipKeyPair.get(),
|
|
membershipIndex: MembershipIndex(0),
|
|
ethClientAddress: EthClient,
|
|
ethAccountAddress: ethAccountAddress,
|
|
membershipContractAddress: contractAddress)
|
|
|
|
# register the rln-relay peer to the membership contract
|
|
let is_successful = await rlnPeer.register()
|
|
check:
|
|
is_successful
|
|
asyncTest "mounting waku rln-relay":
|
|
let
|
|
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
|
|
node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"),
|
|
Port(60000))
|
|
await node.start()
|
|
|
|
# deploy the contract
|
|
let membershipContractAddress = await uploadContract(EthClient)
|
|
|
|
# prepare rln-relay inputs
|
|
let
|
|
web3 = await newWeb3(EthClient)
|
|
accounts = await web3.provider.eth_accounts()
|
|
# choose one of the existing account for the rln-relay peer
|
|
ethAccountAddress = accounts[9]
|
|
await web3.close()
|
|
|
|
# create current peer's pk
|
|
var rlnInstance = createRLNInstance()
|
|
check rlnInstance.isOk == true
|
|
var rln = rlnInstance.value
|
|
# generate a key pair
|
|
var keypair = rln.membershipKeyGen()
|
|
doAssert(keypair.isSome())
|
|
|
|
# current peer index in the Merkle tree
|
|
let index = uint(5)
|
|
|
|
# Create a group of 10 members
|
|
var group = newSeq[IDCommitment]()
|
|
for i in 0..10:
|
|
var member_is_added: bool = false
|
|
if (uint(i) == index):
|
|
# insert the current peer's pk
|
|
group.add(keypair.get().idCommitment)
|
|
member_is_added = rln.insertMember(keypair.get().idCommitment)
|
|
doAssert(member_is_added)
|
|
debug "member key", key=keypair.get().idCommitment.toHex
|
|
else:
|
|
var memberKeypair = rln.membershipKeyGen()
|
|
doAssert(memberKeypair.isSome())
|
|
group.add(memberKeypair.get().idCommitment)
|
|
member_is_added = rln.insertMember(memberKeypair.get().idCommitment)
|
|
doAssert(member_is_added)
|
|
debug "member key", key=memberKeypair.get().idCommitment.toHex
|
|
let expectedRoot = rln.getMerkleRoot().value().toHex
|
|
debug "expected root ", expectedRoot
|
|
|
|
# start rln-relay
|
|
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
|
|
await node.mountRlnRelay(ethClientAddrOpt = some(EthClient), ethAccAddrOpt = some(ethAccountAddress), memContractAddOpt = some(membershipContractAddress), groupOpt = some(group), memKeyPairOpt = some(keypair.get()), memIndexOpt = some(index), pubsubTopic = RLNRELAY_PUBSUB_TOPIC)
|
|
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
|
|
debug "calculated root ", calculatedRoot
|
|
|
|
check expectedRoot == calculatedRoot
|
|
|
|
await node.stop()
|
|
|
|
asyncTest "mount waku-rln-relay in the off-chain mode":
|
|
let
|
|
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
|
|
node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"),
|
|
Port(60000))
|
|
await node.start()
|
|
|
|
# preparing inputs to mount rln-relay
|
|
|
|
# create a group of 100 membership keys
|
|
let
|
|
(groupKeys, root) = createMembershipList(100)
|
|
check groupKeys.len == 100
|
|
let
|
|
# convert the keys to MembershipKeyPair structs
|
|
groupKeyPairs = groupKeys.toMembershipKeyPairs()
|
|
# extract the id commitments
|
|
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
|
|
debug "groupKeyPairs", groupKeyPairs
|
|
debug "groupIDCommitments", groupIDCommitments
|
|
|
|
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
|
|
# the corresponding key pair will be used to mount rlnRelay on the current node
|
|
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
|
|
let index = MembershipIndex(5)
|
|
|
|
# -------- mount rln-relay in the off-chain mode
|
|
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
|
|
await node.mountRlnRelay(groupOpt = some(groupIDCommitments), memKeyPairOpt = some(groupKeyPairs[index]), memIndexOpt = some(index), onchainMode = false, pubsubTopic = RLNRELAY_PUBSUB_TOPIC)
|
|
|
|
# get the root of Merkle tree which is constructed inside the mountRlnRelay proc
|
|
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
|
|
debug "calculated root by mountRlnRelay", calculatedRoot
|
|
|
|
# this part checks whether the Merkle tree is constructed correctly inside the mountRlnRelay proc
|
|
# this check is done by comparing the tree root resulted from mountRlnRelay i.e., calculatedRoot
|
|
# against the root which is the expected root
|
|
check calculatedRoot == root
|
|
|
|
await node.stop()
|
|
|
|
suite "Waku rln relay":
|
|
test "key_gen Nim Wrappers":
|
|
var
|
|
merkleDepth: csize_t = 32
|
|
# parameters.key contains the parameters related to the Poseidon hasher
|
|
# to generate this file, clone this repo https://github.com/kilic/rln
|
|
# and run the following command in the root directory of the cloned project
|
|
# cargo run --example export_test_keys
|
|
# the file is generated separately and copied here
|
|
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
|
|
pbytes = parameters.toBytes()
|
|
len : csize_t = uint(pbytes.len)
|
|
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
|
|
check:
|
|
# check the parameters.key is not empty
|
|
pbytes.len != 0
|
|
|
|
var
|
|
rlnInstance: RLN[Bn256]
|
|
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer, addr rlnInstance)
|
|
check:
|
|
# check whether the circuit parameters are generated successfully
|
|
res == true
|
|
|
|
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
|
|
var
|
|
keysBuffer : Buffer
|
|
keysBufferPtr = addr(keysBuffer)
|
|
done = key_gen(rlnInstance, keysBufferPtr)
|
|
check:
|
|
# check whether the keys are generated successfully
|
|
done == true
|
|
|
|
if done:
|
|
var generatedKeys = cast[ptr array[64, byte]](keysBufferPtr.`ptr`)[]
|
|
check:
|
|
# the public and secret keys together are 64 bytes
|
|
generatedKeys.len == 64
|
|
debug "generated keys: ", generatedKeys
|
|
|
|
test "membership Key Gen":
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
var key = membershipKeyGen(rlnInstance.value)
|
|
var empty : array[32,byte]
|
|
check:
|
|
key.isSome
|
|
key.get().idKey.len == 32
|
|
key.get().idCommitment.len == 32
|
|
key.get().idKey != empty
|
|
key.get().idCommitment != empty
|
|
|
|
debug "the generated membership key pair: ", key
|
|
|
|
test "get_root Nim binding":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root1 {.noinit.} : Buffer = Buffer()
|
|
rootPtr1 = addr(root1)
|
|
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
|
|
check:
|
|
get_root_successful1
|
|
root1.len == 32
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root2 {.noinit.} : Buffer = Buffer()
|
|
rootPtr2 = addr(root2)
|
|
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
|
|
check:
|
|
get_root_successful2
|
|
root2.len == 32
|
|
|
|
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
|
|
let rootHex1 = rootValue1[].toHex
|
|
|
|
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
|
|
let rootHex2 = rootValue2[].toHex
|
|
|
|
# the two roots must be identical
|
|
check rootHex1 == rootHex2
|
|
test "getMerkleRoot utils":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# read the Merkle Tree root
|
|
var root1 = getMerkleRoot(rlnInstance.value())
|
|
check root1.isOk
|
|
let rootHex1 = root1.value().toHex
|
|
|
|
# read the Merkle Tree root
|
|
var root2 = getMerkleRoot(rlnInstance.value())
|
|
check root2.isOk
|
|
let rootHex2 = root2.value().toHex
|
|
|
|
# the two roots must be identical
|
|
check rootHex1 == rootHex2
|
|
|
|
test "update_next_member Nim Wrapper":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# generate a key pair
|
|
var keypair = membershipKeyGen(rlnInstance.value)
|
|
check keypair.isSome()
|
|
var pkBuffer = toBuffer(keypair.get().idCommitment)
|
|
let pkBufferPtr = addr pkBuffer
|
|
|
|
# add the member to the tree
|
|
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
|
|
check:
|
|
member_is_added == true
|
|
|
|
test "delete_member Nim wrapper":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# delete the first member
|
|
var deleted_member_index = MembershipIndex(0)
|
|
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
|
|
check deletion_success
|
|
|
|
test "insertMember rln utils":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
var rln = rlnInstance.value
|
|
# generate a key pair
|
|
var keypair = rln.membershipKeyGen()
|
|
check keypair.isSome()
|
|
check:
|
|
rln.insertMember(keypair.get().idCommitment)
|
|
|
|
test "removeMember rln utils":
|
|
# create an RLN instance which also includes an empty Merkle tree
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
var rln = rlnInstance.value
|
|
check:
|
|
rln.removeMember(MembershipIndex(0))
|
|
|
|
test "Merkle tree consistency check between deletion and insertion":
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# read the Merkle Tree root
|
|
var
|
|
root1 {.noinit.} : Buffer = Buffer()
|
|
rootPtr1 = addr(root1)
|
|
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
|
|
check:
|
|
get_root_successful1
|
|
root1.len == 32
|
|
|
|
# generate a key pair
|
|
var keypair = membershipKeyGen(rlnInstance.value)
|
|
check: keypair.isSome()
|
|
var pkBuffer = toBuffer(keypair.get().idCommitment)
|
|
let pkBufferPtr = addr pkBuffer
|
|
|
|
# add the member to the tree
|
|
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
|
|
check member_is_added
|
|
|
|
# read the Merkle Tree root after insertion
|
|
var
|
|
root2 {.noinit.} : Buffer = Buffer()
|
|
rootPtr2 = addr(root2)
|
|
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
|
|
check:
|
|
get_root_successful2
|
|
root2.len == 32
|
|
|
|
# delete the first member
|
|
var deleted_member_index = MembershipIndex(0)
|
|
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
|
|
check deletion_success
|
|
|
|
# read the Merkle Tree root after the deletion
|
|
var
|
|
root3 {.noinit.} : Buffer = Buffer()
|
|
rootPtr3 = addr(root3)
|
|
get_root_successful3 = get_root(rlnInstance.value, rootPtr3)
|
|
check:
|
|
get_root_successful3
|
|
root3.len == 32
|
|
|
|
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
|
|
let rootHex1 = rootValue1[].toHex
|
|
debug "The initial root", rootHex1
|
|
|
|
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
|
|
let rootHex2 = rootValue2[].toHex
|
|
debug "The root after insertion", rootHex2
|
|
|
|
var rootValue3 = cast[ptr array[32,byte]] (root3.`ptr`)
|
|
let rootHex3 = rootValue3[].toHex
|
|
debug "The root after deletion", rootHex3
|
|
|
|
# the root must change after the insertion
|
|
check: not(rootHex1 == rootHex2)
|
|
|
|
## The initial root of the tree (empty tree) must be identical to
|
|
## the root of the tree after one insertion followed by a deletion
|
|
check rootHex1 == rootHex3
|
|
test "Merkle tree consistency check between deletion and insertion using rln utils":
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
var rln = rlnInstance.value()
|
|
|
|
# read the Merkle Tree root
|
|
var root1 = rln.getMerkleRoot()
|
|
check root1.isOk
|
|
let rootHex1 = root1.value().toHex()
|
|
|
|
# generate a key pair
|
|
var keypair = rln.membershipKeyGen()
|
|
check keypair.isSome()
|
|
let member_inserted = rln.insertMember(keypair.get().idCommitment)
|
|
check member_inserted
|
|
|
|
# read the Merkle Tree root after insertion
|
|
var root2 = rln.getMerkleRoot()
|
|
check root2.isOk
|
|
let rootHex2 = root2.value().toHex()
|
|
|
|
|
|
# delete the first member
|
|
var deleted_member_index = MembershipIndex(0)
|
|
let deletion_success = rln.removeMember(deleted_member_index)
|
|
check deletion_success
|
|
|
|
# read the Merkle Tree root after the deletion
|
|
var root3 = rln.getMerkleRoot()
|
|
check root3.isOk
|
|
let rootHex3 = root3.value().toHex()
|
|
|
|
|
|
debug "The initial root", rootHex1
|
|
debug "The root after insertion", rootHex2
|
|
debug "The root after deletion", rootHex3
|
|
|
|
# the root must change after the insertion
|
|
check not(rootHex1 == rootHex2)
|
|
|
|
## The initial root of the tree (empty tree) must be identical to
|
|
## the root of the tree after one insertion followed by a deletion
|
|
check rootHex1 == rootHex3
|
|
|
|
test "hash Nim Wrappers":
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
|
|
# prepare the input
|
|
var
|
|
msg = "Hello".toBytes()
|
|
hashInput = appendLength(msg)
|
|
hashInputBuffer = toBuffer(hashInput)
|
|
|
|
# prepare other inputs to the hash function
|
|
var outputBuffer: Buffer
|
|
|
|
let hashSuccess = hash(rlnInstance.value, addr hashInputBuffer, addr outputBuffer)
|
|
check hashSuccess
|
|
let outputArr = cast[ptr array[32,byte]](outputBuffer.`ptr`)[]
|
|
check:
|
|
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" == outputArr.toHex()
|
|
|
|
var
|
|
hashOutput = cast[ptr array[32,byte]] (outputBuffer.`ptr`)[]
|
|
hashOutputHex = hashOutput.toHex()
|
|
|
|
debug "hash output", hashOutputHex
|
|
|
|
test "hash utils":
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
let rln = rlnInstance.value
|
|
|
|
# prepare the input
|
|
let msg = "Hello".toBytes()
|
|
|
|
let hash = rln.hash(msg)
|
|
check:
|
|
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" == hash.toHex()
|
|
|
|
test "create a list of membership keys and construct a Merkle tree based on the list":
|
|
let
|
|
groupSize = 100
|
|
(list, root) = createMembershipList(groupSize)
|
|
|
|
debug "created membership key list", list
|
|
debug "the Merkle tree root", root
|
|
|
|
check:
|
|
list.len == groupSize # check the number of keys
|
|
root.len == HASH_HEX_SIZE # check the size of the calculated tree root
|
|
|
|
test "check correctness of toMembershipKeyPairs and calcMerkleRoot":
|
|
let groupKeys = STATIC_GROUP_KEYS
|
|
|
|
# create a set of MembershipKeyPair objects from groupKeys
|
|
let groupKeyPairs = groupKeys.toMembershipKeyPairs()
|
|
# extract the id commitments
|
|
let groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
|
|
# calculate the Merkle tree root out of the extracted id commitments
|
|
let root = calcMerkleRoot(groupIDCommitments)
|
|
|
|
debug "groupKeyPairs", groupKeyPairs
|
|
debug "groupIDCommitments", groupIDCommitments
|
|
debug "root", root
|
|
|
|
check:
|
|
# check that the correct number of key pairs is created
|
|
groupKeyPairs.len == StaticGroupSize
|
|
# compare the calculated root against the correct root
|
|
root == STATIC_GROUP_MERKLE_ROOT
|
|
|
|
test "RateLimitProof Protobuf encode/init test":
|
|
var
|
|
proof: ZKSNARK
|
|
merkleRoot: MerkleNode
|
|
epoch: Epoch
|
|
shareX: MerkleNode
|
|
shareY: MerkleNode
|
|
nullifier: Nullifier
|
|
# populate fields with dummy values
|
|
for x in proof.mitems : x = 1
|
|
for x in merkleRoot.mitems : x = 2
|
|
for x in epoch.mitems : x = 3
|
|
for x in shareX.mitems : x = 4
|
|
for x in shareY.mitems : x = 5
|
|
for x in nullifier.mitems : x = 6
|
|
|
|
let
|
|
rateLimitProof = RateLimitProof(proof: proof,
|
|
merkleRoot: merkleRoot,
|
|
epoch: epoch,
|
|
shareX: shareX,
|
|
shareY: shareY,
|
|
nullifier: nullifier)
|
|
protobuf = rateLimitProof.encode()
|
|
decodednsp = RateLimitProof.init(protobuf.buffer)
|
|
|
|
check:
|
|
decodednsp.isErr == false
|
|
decodednsp.value == rateLimitProof
|
|
|
|
test "test proofVerify and proofGen for a valid proof":
|
|
var rlnInstance = createRLNInstance()
|
|
check rlnInstance.isOk
|
|
var rln = rlnInstance.value
|
|
|
|
let
|
|
# create a membership key pair
|
|
memKeys = membershipKeyGen(rln).get()
|
|
# peer's index in the Merkle Tree
|
|
index = 5
|
|
|
|
# Create a Merkle tree with random members
|
|
for i in 0..10:
|
|
var member_is_added: bool = false
|
|
if (i == index):
|
|
# insert the current peer's pk
|
|
member_is_added = rln.insertMember(memKeys.idCommitment)
|
|
else:
|
|
# create a new key pair
|
|
let memberKeys = rln.membershipKeyGen()
|
|
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
|
|
# check the member is added
|
|
check member_is_added
|
|
|
|
# prepare the message
|
|
let messageBytes = "Hello".toBytes()
|
|
|
|
# prepare the epoch
|
|
var epoch : Epoch
|
|
debug "epoch", epochHex=epoch.toHex()
|
|
|
|
# generate proof
|
|
let proofRes = rln.proofGen(data = messageBytes,
|
|
memKeys = memKeys,
|
|
memIndex = MembershipIndex(index),
|
|
epoch = epoch)
|
|
check proofRes.isOk()
|
|
let proof = proofRes.value
|
|
|
|
# verify the proof
|
|
let verified = rln.proofVerify(data = messageBytes,
|
|
proof = proof)
|
|
check verified == true
|
|
|
|
test "test proofVerify and proofGen for an invalid proof":
|
|
var rlnInstance = createRLNInstance()
|
|
check:
|
|
rlnInstance.isOk == true
|
|
var rln = rlnInstance.value
|
|
|
|
let
|
|
# create a membership key pair
|
|
memKeys = membershipKeyGen(rln).get()
|
|
# peer's index in the Merkle Tree
|
|
index = 5
|
|
|
|
# Create a Merkle tree with random members
|
|
for i in 0..10:
|
|
var member_is_added: bool = false
|
|
if (i == index):
|
|
# insert the current peer's pk
|
|
member_is_added = rln.insertMember(memKeys.idCommitment)
|
|
else:
|
|
# create a new key pair
|
|
let memberKeys = rln.membershipKeyGen()
|
|
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
|
|
# check the member is added
|
|
check member_is_added
|
|
|
|
# prepare the message
|
|
let messageBytes = "Hello".toBytes()
|
|
|
|
# prepare the epoch
|
|
var epoch : Epoch
|
|
debug "epoch in bytes", epochHex=epoch.toHex()
|
|
|
|
|
|
let badIndex = 4
|
|
# generate proof
|
|
let proofRes = rln.proofGen(data = messageBytes,
|
|
memKeys = memKeys,
|
|
memIndex = MembershipIndex(badIndex),
|
|
epoch = epoch)
|
|
check proofRes.isOk()
|
|
let proof = proofRes.value
|
|
|
|
# verify the proof (should not be verified)
|
|
let verified = rln.proofVerify(data = messageBytes,
|
|
proof = proof)
|
|
check verified == false
|
|
test "toEpoch and fromEpoch consistency check":
|
|
# check edge cases
|
|
let
|
|
time = uint64.high
|
|
epoch = time.toEpoch()
|
|
decodedTime = epoch.fromEpoch()
|
|
check time == decodedTime
|
|
debug "encoded and decode time", time=time, epoch=epoch, decodedTime=decodedTime
|
|
|
|
test "Epoch comparison":
|
|
# check edge cases
|
|
let
|
|
time1 = uint64.high
|
|
time2 = uint64.high - 1
|
|
epoch1 = time1.toEpoch()
|
|
epoch2 = time2.toEpoch()
|
|
check compare(epoch1, epoch2) == int64(1)
|
|
check compare(epoch2, epoch1) == int64(-1)
|
|
|
|
test "updateLog and hasDuplicate tests":
|
|
let
|
|
wakurlnrelay = WakuRLNRelay()
|
|
epoch = getCurrentEpoch()
|
|
|
|
# cretae some dummy nullifiers and secret shares
|
|
var nullifier1: Nullifier
|
|
for index, x in nullifier1.mpairs: nullifier1[index] = 1
|
|
var shareX1: MerkleNode
|
|
for index, x in shareX1.mpairs: shareX1[index] = 1
|
|
let shareY1 = shareX1
|
|
|
|
var nullifier2: Nullifier
|
|
for index, x in nullifier2.mpairs: nullifier2[index] = 2
|
|
var shareX2: MerkleNode
|
|
for index, x in shareX2.mpairs: shareX2[index] = 2
|
|
let shareY2 = shareX2
|
|
|
|
let nullifier3 = nullifier1
|
|
var shareX3: MerkleNode
|
|
for index, x in shareX3.mpairs: shareX3[index] = 3
|
|
let shareY3 = shareX3
|
|
|
|
let
|
|
wm1 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier1, shareX: shareX1, shareY: shareY1))
|
|
wm2 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier2, shareX: shareX2, shareY: shareY2))
|
|
wm3 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier3, shareX: shareX3, shareY: shareY3))
|
|
|
|
# check whether hasDuplicate correctly finds records with the same nullifiers but different secret shares
|
|
# no duplicate for wm1 should be found, since the log is empty
|
|
let result1 = wakurlnrelay.hasDuplicate(wm1)
|
|
check:
|
|
result1.isOk
|
|
# no duplicate is found
|
|
result1.value == false
|
|
# add it to the log
|
|
discard wakurlnrelay.updateLog(wm1)
|
|
|
|
# # no duplicate for wm2 should be found, its nullifier differs from wm1
|
|
let result2 = wakurlnrelay.hasDuplicate(wm2)
|
|
check:
|
|
result2.isOk
|
|
# no duplicate is found
|
|
result2.value == false
|
|
# add it to the log
|
|
discard wakurlnrelay.updateLog(wm2)
|
|
|
|
# wm3 has the same nullifier as wm1 but different secret shares, it should be detected as duplicate
|
|
let result3 = wakurlnrelay.hasDuplicate(wm3)
|
|
check:
|
|
result3.isOk
|
|
# it is a duplicate
|
|
result3.value == true
|
|
|
|
test "validateMessage test":
|
|
# setup a wakurlnrelay peer with a static group----------
|
|
|
|
# create a group of 100 membership keys
|
|
let
|
|
(groupKeys, root) = createMembershipList(100)
|
|
# convert the keys to MembershipKeyPair structs
|
|
groupKeyPairs = groupKeys.toMembershipKeyPairs()
|
|
# extract the id commitments
|
|
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
|
|
debug "groupKeyPairs", groupKeyPairs
|
|
debug "groupIDCommitments", groupIDCommitments
|
|
|
|
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
|
|
# the corresponding key pair will be used to mount rlnRelay on the current node
|
|
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
|
|
let index = MembershipIndex(5)
|
|
|
|
# create an RLN instance
|
|
var rlnInstance = createRLNInstance()
|
|
doAssert(rlnInstance.isOk)
|
|
var rln = rlnInstance.value
|
|
|
|
# add members
|
|
discard rln.addAll(groupIDCommitments)
|
|
|
|
let
|
|
wakuRlnRelay = WakuRLNRelay(membershipIndex: index, membershipKeyPair: groupKeyPairs[index], rlnInstance: rln)
|
|
|
|
# get the current epoch time
|
|
let time = epochTime()
|
|
|
|
# create some messages from the same peer and append rln proof to them, except wm4
|
|
var
|
|
wm1 = WakuMessage(payload: "Valid message".toBytes())
|
|
proofAdded1 = wakuRlnRelay.appendRLNProof(wm1, time)
|
|
# another message in the same epoch as wm1, it will break the messaging rate limit
|
|
wm2 = WakuMessage(payload: "Spam".toBytes())
|
|
proofAdded2 = wakuRlnRelay.appendRLNProof(wm2, time)
|
|
# wm3 points to the next epoch
|
|
wm3 = WakuMessage(payload: "Valid message".toBytes())
|
|
proofAdded3 = wakuRlnRelay.appendRLNProof(wm3, time+EPOCH_UNIT_SECONDS)
|
|
wm4 = WakuMessage(payload: "Invalid message".toBytes())
|
|
|
|
# checks proofs are added
|
|
check:
|
|
proofAdded1
|
|
proofAdded2
|
|
proofAdded3
|
|
|
|
# validate messages
|
|
# validateMessage proc checks the validity of the message fields and adds it to the log (if valid)
|
|
let
|
|
msgValidate1 = wakuRlnRelay.validateMessage(wm1)
|
|
# wm2 is published within the same Epoch as wm1 and should be found as spam
|
|
msgValidate2 = wakuRlnRelay.validateMessage(wm2)
|
|
# a valid message should be validated successfully
|
|
msgValidate3 = wakuRlnRelay.validateMessage(wm3)
|
|
# wm4 has no rln proof and should not be validated
|
|
msgValidate4 = wakuRlnRelay.validateMessage(wm4)
|
|
|
|
|
|
check:
|
|
msgValidate1 == MessageValidationResult.Valid
|
|
msgValidate2 == MessageValidationResult.Spam
|
|
msgValidate3 == MessageValidationResult.Valid
|
|
msgValidate4 == MessageValidationResult.Invalid
|
|
|