nwaku/tests/v2/test_waku_rln_relay.nim

707 lines
22 KiB
Nim

{.used.}
import
std/options, sequtils, times,
testutils/unittests, chronos, chronicles, stint, web3,
stew/byteutils, stew/shims/net as stewNet,
libp2p/crypto/crypto,
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils,
waku_rln_relay_types],
../../waku/v2/node/wakunode2,
../test_helpers,
./test_utils
const RLNRELAY_PUBSUB_TOPIC = "waku/2/rlnrelay/proto"
const RLNRELAY_CONTENT_TOPIC = "waku/2/rlnrelay/proto"
procSuite "Waku rln relay":
asyncTest "mount waku-rln-relay in the off-chain mode":
let
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"),
Port(60000))
await node.start()
# preparing inputs to mount rln-relay
# create a group of 100 membership keys
let
(groupKeys, root) = createMembershipList(100)
check:
groupKeys.len == 100
let
# convert the keys to MembershipKeyPair structs
groupKeyPairs = groupKeys.toMembershipKeyPairs()
# extract the id commitments
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
debug "groupKeyPairs", groupKeyPairs
debug "groupIDCommitments", groupIDCommitments
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# the corresponding key pair will be used to mount rlnRelay on the current node
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
let index = MembershipIndex(5)
# -------- mount rln-relay in the off-chain mode
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
await node.mountRlnRelay(groupOpt = some(groupIDCommitments),
memKeyPairOpt = some(groupKeyPairs[index]),
memIndexOpt = some(index),
onchainMode = false,
pubsubTopic = RLNRELAY_PUBSUB_TOPIC,
contentTopic = RLNRELAY_CONTENT_TOPIC)
# get the root of Merkle tree which is constructed inside the mountRlnRelay proc
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
debug "calculated root by mountRlnRelay", calculatedRoot
# this part checks whether the Merkle tree is constructed correctly inside the mountRlnRelay proc
# this check is done by comparing the tree root resulted from mountRlnRelay i.e., calculatedRoot
# against the root which is the expected root
check:
calculatedRoot == root
await node.stop()
suite "Waku rln relay":
test "key_gen Nim Wrappers":
var
merkleDepth: csize_t = 32
# parameters.key contains the parameters related to the Poseidon hasher
# to generate this file, clone this repo https://github.com/kilic/rln
# and run the following command in the root directory of the cloned project
# cargo run --example export_test_keys
# the file is generated separately and copied here
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
pbytes = parameters.toBytes()
len: csize_t = uint(pbytes.len)
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
check:
# check the parameters.key is not empty
pbytes.len != 0
var
rlnInstance: RLN[Bn256]
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer,
addr rlnInstance)
check:
# check whether the circuit parameters are generated successfully
res == true
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer: Buffer
keysBufferPtr = addr(keysBuffer)
done = key_gen(rlnInstance, keysBufferPtr)
check:
# check whether the keys are generated successfully
done == true
if done:
var generatedKeys = cast[ptr array[64, byte]](keysBufferPtr.`ptr`)[]
check:
# the public and secret keys together are 64 bytes
generatedKeys.len == 64
debug "generated keys: ", generatedKeys
test "membership Key Gen":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var key = membershipKeyGen(rlnInstance.value)
var empty: array[32, byte]
check:
key.isSome
key.get().idKey.len == 32
key.get().idCommitment.len == 32
key.get().idKey != empty
key.get().idCommitment != empty
debug "the generated membership key pair: ", key
test "get_root Nim binding":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# read the Merkle Tree root
var
root1 {.noinit.}: Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
check:
get_root_successful1
root1.len == 32
# read the Merkle Tree root
var
root2 {.noinit.}: Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
check:
get_root_successful2
root2.len == 32
var rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
var rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
# the two roots must be identical
check:
rootHex1 == rootHex2
test "getMerkleRoot utils":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# read the Merkle Tree root
var root1 = getMerkleRoot(rlnInstance.value())
check:
root1.isOk
let rootHex1 = root1.value().toHex
# read the Merkle Tree root
var root2 = getMerkleRoot(rlnInstance.value())
check:
root2.isOk
let rootHex2 = root2.value().toHex
# the two roots must be identical
check:
rootHex1 == rootHex2
test "update_next_member Nim Wrapper":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# generate a key pair
var keypair = membershipKeyGen(rlnInstance.value)
check:
keypair.isSome()
var pkBuffer = toBuffer(keypair.get().idCommitment)
let pkBufferPtr = addr pkBuffer
# add the member to the tree
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
check:
member_is_added == true
test "delete_member Nim wrapper":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
check:
deletion_success
test "insertMember rln utils":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value
# generate a key pair
var keypair = rln.membershipKeyGen()
check:
keypair.isSome()
check:
rln.insertMember(keypair.get().idCommitment)
test "removeMember rln utils":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value
check:
rln.removeMember(MembershipIndex(0))
test "Merkle tree consistency check between deletion and insertion":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# read the Merkle Tree root
var
root1 {.noinit.}: Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
check:
get_root_successful1
root1.len == 32
# generate a key pair
var keypair = membershipKeyGen(rlnInstance.value)
check: keypair.isSome()
var pkBuffer = toBuffer(keypair.get().idCommitment)
let pkBufferPtr = addr pkBuffer
# add the member to the tree
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
check:
member_is_added
# read the Merkle Tree root after insertion
var
root2 {.noinit.}: Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
check:
get_root_successful2
root2.len == 32
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
check:
deletion_success
# read the Merkle Tree root after the deletion
var
root3 {.noinit.}: Buffer = Buffer()
rootPtr3 = addr(root3)
get_root_successful3 = get_root(rlnInstance.value, rootPtr3)
check:
get_root_successful3
root3.len == 32
var rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
debug "The initial root", rootHex1
var rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
debug "The root after insertion", rootHex2
var rootValue3 = cast[ptr array[32, byte]] (root3.`ptr`)
let rootHex3 = rootValue3[].toHex
debug "The root after deletion", rootHex3
# the root must change after the insertion
check: not(rootHex1 == rootHex2)
## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion
check:
rootHex1 == rootHex3
test "Merkle tree consistency check between deletion and insertion using rln utils":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value()
# read the Merkle Tree root
var root1 = rln.getMerkleRoot()
check:
root1.isOk
let rootHex1 = root1.value().toHex()
# generate a key pair
var keypair = rln.membershipKeyGen()
check:
keypair.isSome()
let member_inserted = rln.insertMember(keypair.get().idCommitment)
check:
member_inserted
# read the Merkle Tree root after insertion
var root2 = rln.getMerkleRoot()
check:
root2.isOk
let rootHex2 = root2.value().toHex()
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = rln.removeMember(deleted_member_index)
check:
deletion_success
# read the Merkle Tree root after the deletion
var root3 = rln.getMerkleRoot()
check:
root3.isOk
let rootHex3 = root3.value().toHex()
debug "The initial root", rootHex1
debug "The root after insertion", rootHex2
debug "The root after deletion", rootHex3
# the root must change after the insertion
check:
not(rootHex1 == rootHex2)
## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion
check:
rootHex1 == rootHex3
test "hash Nim Wrappers":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# prepare the input
var
msg = "Hello".toBytes()
hashInput = appendLength(msg)
hashInputBuffer = toBuffer(hashInput)
# prepare other inputs to the hash function
var outputBuffer: Buffer
let hashSuccess = hash(rlnInstance.value, addr hashInputBuffer,
addr outputBuffer)
check:
hashSuccess
let outputArr = cast[ptr array[32, byte]](outputBuffer.`ptr`)[]
check:
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" ==
outputArr.toHex()
var
hashOutput = cast[ptr array[32, byte]] (outputBuffer.`ptr`)[]
hashOutputHex = hashOutput.toHex()
debug "hash output", hashOutputHex
test "hash utils":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
let rln = rlnInstance.value
# prepare the input
let msg = "Hello".toBytes()
let hash = rln.hash(msg)
check:
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" ==
hash.toHex()
test "create a list of membership keys and construct a Merkle tree based on the list":
let
groupSize = 100
(list, root) = createMembershipList(groupSize)
debug "created membership key list", list
debug "the Merkle tree root", root
check:
list.len == groupSize # check the number of keys
root.len == HASH_HEX_SIZE # check the size of the calculated tree root
test "check correctness of toMembershipKeyPairs and calcMerkleRoot":
let groupKeys = STATIC_GROUP_KEYS
# create a set of MembershipKeyPair objects from groupKeys
let groupKeyPairs = groupKeys.toMembershipKeyPairs()
# extract the id commitments
let groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
# calculate the Merkle tree root out of the extracted id commitments
let root = calcMerkleRoot(groupIDCommitments)
debug "groupKeyPairs", groupKeyPairs
debug "groupIDCommitments", groupIDCommitments
debug "root", root
check:
# check that the correct number of key pairs is created
groupKeyPairs.len == StaticGroupSize
# compare the calculated root against the correct root
root == STATIC_GROUP_MERKLE_ROOT
test "RateLimitProof Protobuf encode/init test":
var
proof: ZKSNARK
merkleRoot: MerkleNode
epoch: Epoch
shareX: MerkleNode
shareY: MerkleNode
nullifier: Nullifier
# populate fields with dummy values
for x in proof.mitems: x = 1
for x in merkleRoot.mitems: x = 2
for x in epoch.mitems: x = 3
for x in shareX.mitems: x = 4
for x in shareY.mitems: x = 5
for x in nullifier.mitems: x = 6
let
rateLimitProof = RateLimitProof(proof: proof,
merkleRoot: merkleRoot,
epoch: epoch,
shareX: shareX,
shareY: shareY,
nullifier: nullifier)
protobuf = rateLimitProof.encode()
decodednsp = RateLimitProof.init(protobuf.buffer)
check:
decodednsp.isErr == false
decodednsp.value == rateLimitProof
test "test proofVerify and proofGen for a valid proof":
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk
var rln = rlnInstance.value
let
# create a membership key pair
memKeys = membershipKeyGen(rln).get()
# peer's index in the Merkle Tree
index = 5
# Create a Merkle tree with random members
for i in 0..10:
var member_is_added: bool = false
if (i == index):
# insert the current peer's pk
member_is_added = rln.insertMember(memKeys.idCommitment)
else:
# create a new key pair
let memberKeys = rln.membershipKeyGen()
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
# check the member is added
check:
member_is_added
# prepare the message
let messageBytes = "Hello".toBytes()
# prepare the epoch
var epoch: Epoch
debug "epoch", epochHex = epoch.toHex()
# generate proof
let proofRes = rln.proofGen(data = messageBytes,
memKeys = memKeys,
memIndex = MembershipIndex(index),
epoch = epoch)
check:
proofRes.isOk()
let proof = proofRes.value
# verify the proof
let verified = rln.proofVerify(data = messageBytes,
proof = proof)
check:
verified == true
test "test proofVerify and proofGen for an invalid proof":
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value
let
# create a membership key pair
memKeys = membershipKeyGen(rln).get()
# peer's index in the Merkle Tree
index = 5
# Create a Merkle tree with random members
for i in 0..10:
var member_is_added: bool = false
if (i == index):
# insert the current peer's pk
member_is_added = rln.insertMember(memKeys.idCommitment)
else:
# create a new key pair
let memberKeys = rln.membershipKeyGen()
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
# check the member is added
check:
member_is_added
# prepare the message
let messageBytes = "Hello".toBytes()
# prepare the epoch
var epoch: Epoch
debug "epoch in bytes", epochHex = epoch.toHex()
let badIndex = 4
# generate proof
let proofRes = rln.proofGen(data = messageBytes,
memKeys = memKeys,
memIndex = MembershipIndex(badIndex),
epoch = epoch)
check:
proofRes.isOk()
let proof = proofRes.value
# verify the proof (should not be verified)
let verified = rln.proofVerify(data = messageBytes,
proof = proof)
check:
verified == false
test "toEpoch and fromEpoch consistency check":
# check edge cases
let
epoch = uint64.high # rln epoch
epochBytes = epoch.toEpoch()
decodedEpoch = epochBytes.fromEpoch()
check:
epoch == decodedEpoch
debug "encoded and decode time", epoch = epoch, epochBytes = epochBytes,
decodedEpoch = decodedEpoch
test "Epoch comparison":
# check edge cases
let
time1 = uint64.high
time2 = uint64.high - 1
epoch1 = time1.toEpoch()
epoch2 = time2.toEpoch()
check:
diff(epoch1, epoch2) == int64(1)
diff(epoch2, epoch1) == int64(-1)
test "updateLog and hasDuplicate tests":
let
wakurlnrelay = WakuRLNRelay()
epoch = getCurrentEpoch()
# cretae some dummy nullifiers and secret shares
var nullifier1: Nullifier
for index, x in nullifier1.mpairs: nullifier1[index] = 1
var shareX1: MerkleNode
for index, x in shareX1.mpairs: shareX1[index] = 1
let shareY1 = shareX1
var nullifier2: Nullifier
for index, x in nullifier2.mpairs: nullifier2[index] = 2
var shareX2: MerkleNode
for index, x in shareX2.mpairs: shareX2[index] = 2
let shareY2 = shareX2
let nullifier3 = nullifier1
var shareX3: MerkleNode
for index, x in shareX3.mpairs: shareX3[index] = 3
let shareY3 = shareX3
let
wm1 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier1, shareX: shareX1, shareY: shareY1))
wm2 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier2, shareX: shareX2, shareY: shareY2))
wm3 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier3, shareX: shareX3, shareY: shareY3))
# check whether hasDuplicate correctly finds records with the same nullifiers but different secret shares
# no duplicate for wm1 should be found, since the log is empty
let result1 = wakurlnrelay.hasDuplicate(wm1)
check:
result1.isOk
# no duplicate is found
result1.value == false
# add it to the log
discard wakurlnrelay.updateLog(wm1)
# # no duplicate for wm2 should be found, its nullifier differs from wm1
let result2 = wakurlnrelay.hasDuplicate(wm2)
check:
result2.isOk
# no duplicate is found
result2.value == false
# add it to the log
discard wakurlnrelay.updateLog(wm2)
# wm3 has the same nullifier as wm1 but different secret shares, it should be detected as duplicate
let result3 = wakurlnrelay.hasDuplicate(wm3)
check:
result3.isOk
# it is a duplicate
result3.value == true
test "validateMessage test":
# setup a wakurlnrelay peer with a static group----------
# create a group of 100 membership keys
let
(groupKeys, root) = createMembershipList(100)
# convert the keys to MembershipKeyPair structs
groupKeyPairs = groupKeys.toMembershipKeyPairs()
# extract the id commitments
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
debug "groupKeyPairs", groupKeyPairs
debug "groupIDCommitments", groupIDCommitments
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# the corresponding key pair will be used to mount rlnRelay on the current node
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
let index = MembershipIndex(5)
# create an RLN instance
var rlnInstance = createRLNInstance()
doAssert(rlnInstance.isOk)
var rln = rlnInstance.value
# add members
discard rln.addAll(groupIDCommitments)
let
wakuRlnRelay = WakuRLNRelay(membershipIndex: index,
membershipKeyPair: groupKeyPairs[index], rlnInstance: rln)
# get the current epoch time
let time = epochTime()
# create some messages from the same peer and append rln proof to them, except wm4
var
wm1 = WakuMessage(payload: "Valid message".toBytes())
proofAdded1 = wakuRlnRelay.appendRLNProof(wm1, time)
# another message in the same epoch as wm1, it will break the messaging rate limit
wm2 = WakuMessage(payload: "Spam".toBytes())
proofAdded2 = wakuRlnRelay.appendRLNProof(wm2, time)
# wm3 points to the next epoch
wm3 = WakuMessage(payload: "Valid message".toBytes())
proofAdded3 = wakuRlnRelay.appendRLNProof(wm3, time+EPOCH_UNIT_SECONDS)
wm4 = WakuMessage(payload: "Invalid message".toBytes())
# checks proofs are added
check:
proofAdded1
proofAdded2
proofAdded3
# validate messages
# validateMessage proc checks the validity of the message fields and adds it to the log (if valid)
let
msgValidate1 = wakuRlnRelay.validateMessage(wm1, some(time))
# wm2 is published within the same Epoch as wm1 and should be found as spam
msgValidate2 = wakuRlnRelay.validateMessage(wm2, some(time))
# a valid message should be validated successfully
msgValidate3 = wakuRlnRelay.validateMessage(wm3, some(time))
# wm4 has no rln proof and should not be validated
msgValidate4 = wakuRlnRelay.validateMessage(wm4, some(time))
check:
msgValidate1 == MessageValidationResult.Valid
msgValidate2 == MessageValidationResult.Spam
msgValidate3 == MessageValidationResult.Valid
msgValidate4 == MessageValidationResult.Invalid