{.used.} import std/[options, os, sequtils, times], stew/byteutils, stew/shims/net as stewNet, testutils/unittests, chronos, chronicles, stint, libp2p/crypto/crypto import ../../waku/v2/node/waku_node, ../../waku/v2/protocol/waku_message, ../../waku/v2/protocol/waku_rln_relay, ../test_helpers const RlnRelayPubsubTopic = "waku/2/rlnrelay/proto" const RlnRelayContentTopic = "waku/2/rlnrelay/proto" procSuite "Waku rln relay": asyncTest "mount waku-rln-relay in the off-chain mode": let nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[] node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"), Port(60200)) await node.start() # preparing inputs to mount rln-relay # create a group of 100 membership keys let memListRes = createMembershipList(100) require: memListRes.isOk() let (groupCredentials, root) = memListRes.get() require: groupCredentials.len == 100 let # convert the keys to IdentityCredential structs groupIdCredentialsRes = groupCredentials.toIdentityCredentials() require: groupIdCredentialsRes.isOk() let groupIdCredentials = groupIdCredentialsRes.get() # extract the id commitments groupIDCommitments = groupIdCredentials.mapIt(it.idCommitment) debug "groupIdCredentials", groupIdCredentials debug "groupIDCommitments", groupIDCommitments # index indicates the position of a membership credential in the static list of group keys i.e., groupIdCredentials # the corresponding credential will be used to mount rlnRelay on the current node # index also represents the index of the leaf in the Merkle tree that contains node's commitment key let index = MembershipIndex(5) # -------- mount rln-relay in the off-chain mode await node.mountRelay(@[RlnRelayPubsubTopic]) let mountRes = node.wakuRelay.mountRlnRelayStatic(group = groupIDCommitments, memIdCredential = groupIdCredentials[index], memIndex = index, pubsubTopic = RlnRelayPubsubTopic, contentTopic = RlnRelayContentTopic) require: mountRes.isOk() let wakuRlnRelay = mountRes.get() # get the root of Merkle tree which is constructed inside the mountRlnRelay proc let calculatedRootRes = wakuRlnRelay.rlnInstance.getMerkleRoot() require: calculatedRootRes.isOk() let calculatedRoot = calculatedRootRes.get().inHex() debug "calculated root by mountRlnRelay", calculatedRoot # this part checks whether the Merkle tree is constructed correctly inside the mountRlnRelay proc # this check is done by comparing the tree root resulted from mountRlnRelay i.e., calculatedRoot # against the root which is the expected root check: calculatedRoot == root await node.stop() suite "Waku rln relay": test "key_gen Nim Wrappers": let merkleDepth: csize_t = 20 let rlnInstance = createRLNInstance() require: rlnInstance.isOk() # keysBufferPtr will hold the generated identity credential i.e., id trapdoor, nullifier, secret hash and commitment var keysBuffer: Buffer let keysBufferPtr = addr(keysBuffer) done = key_gen(rlnInstance.get(), keysBufferPtr) require: # check whether the keys are generated successfully done let generatedKeys = cast[ptr array[4*32, byte]](keysBufferPtr.`ptr`)[] check: # the id trapdoor, nullifier, secert hash and commitment together are 4*32 bytes generatedKeys.len == 4*32 debug "generated keys: ", generatedKeys test "membership Key Generation": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let idCredentialsRes = membershipKeyGen(rlnInstance.get()) require: idCredentialsRes.isOk() let idCredential = idCredentialsRes.get() let empty = default(array[32, byte]) check: idCredential.idTrapdoor.len == 32 idCredential.idNullifier.len == 32 idCredential.idSecretHash.len == 32 idCredential.idCommitment.len == 32 idCredential.idTrapdoor != empty idCredential.idNullifier != empty idCredential.idSecretHash != empty idCredential.idCommitment != empty debug "the generated identity credential: ", idCredential test "getRoot Nim binding": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() # read the Merkle Tree root let root1 {.noinit.}: Buffer = Buffer() rootPtr1 = unsafeAddr(root1) getRootSuccessful1 = getRoot(rlnInstance.get(), rootPtr1) require: getRootSuccessful1 root1.len == 32 # read the Merkle Tree root let root2 {.noinit.}: Buffer = Buffer() rootPtr2 = unsafeAddr(root2) getRootSuccessful2 = getRoot(rlnInstance.get(), rootPtr2) require: getRootSuccessful2 root2.len == 32 let rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`) let rootHex1 = rootValue1[].inHex let rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`) let rootHex2 = rootValue2[].inHex # the two roots must be identical check: rootHex1 == rootHex2 test "getMerkleRoot utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 = getMerkleRoot(rln) require: root1.isOk() let rootHex1 = root1.value().inHex # read the Merkle Tree root let root2 = getMerkleRoot(rln) require: root2.isOk() let rootHex2 = root2.value().inHex # the two roots must be identical check: rootHex1 == rootHex2 test "update_next_member Nim Wrapper": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let pkBuffer = toBuffer(idCredential.idCommitment) let pkBufferPtr = unsafeAddr(pkBuffer) # add the member to the tree let memberAdded = updateNextMember(rln, pkBufferPtr) check: memberAdded test "delete_member Nim wrapper": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = deleteMember(rlnInstance.get(), deletedMemberIndex) check: deletionSuccess test "insertMembers rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() check: rln.insertMembers(0, @[idCredentialRes.get().idCommitment]) test "insertMember rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() check: rln.insertMember(idCredentialRes.get().idCommitment) test "removeMember rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() check: rln.removeMember(MembershipIndex(0)) test "Merkle tree consistency check between deletion and insertion": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 {.noinit.}: Buffer = Buffer() rootPtr1 = unsafeAddr(root1) getRootSuccessful1 = getRoot(rln, rootPtr1) require: getRootSuccessful1 root1.len == 32 # generate an identity credential let idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let pkBuffer = toBuffer(idCredential.idCommitment) let pkBufferPtr = unsafeAddr(pkBuffer) # add the member to the tree let memberAdded = updateNextMember(rln, pkBufferPtr) require: memberAdded # read the Merkle Tree root after insertion let root2 {.noinit.}: Buffer = Buffer() rootPtr2 = unsafeAddr(root2) getRootSuccessful = getRoot(rln, rootPtr2) require: getRootSuccessful root2.len == 32 # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = deleteMember(rln, deletedMemberIndex) require: deletionSuccess # read the Merkle Tree root after the deletion let root3 {.noinit.}: Buffer = Buffer() rootPtr3 = unsafeAddr(root3) getRootSuccessful3 = getRoot(rln, rootPtr3) require: getRootSuccessful3 root3.len == 32 let rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`) let rootHex1 = rootValue1[].inHex debug "The initial root", rootHex1 let rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`) let rootHex2 = rootValue2[].inHex debug "The root after insertion", rootHex2 let rootValue3 = cast[ptr array[32, byte]] (root3.`ptr`) let rootHex3 = rootValue3[].inHex debug "The root after deletion", rootHex3 # the root must change after the insertion check: not(rootHex1 == rootHex2) ## The initial root of the tree (empty tree) must be identical to ## the root of the tree after one insertion followed by a deletion check: rootHex1 == rootHex3 test "Merkle tree consistency check between deletion and insertion using rln utils": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 = rln.getMerkleRoot() require: root1.isOk() let rootHex1 = root1.value().inHex() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() let memberInserted = rln.insertMembers(0, @[idCredentialRes.get().idCommitment]) require: memberInserted # read the Merkle Tree root after insertion let root2 = rln.getMerkleRoot() require: root2.isOk() let rootHex2 = root2.value().inHex() # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = rln.removeMember(deletedMemberIndex) require: deletionSuccess # read the Merkle Tree root after the deletion let root3 = rln.getMerkleRoot() require: root3.isOk() let rootHex3 = root3.value().inHex() debug "The initial root", rootHex1 debug "The root after insertion", rootHex2 debug "The root after deletion", rootHex3 # the root must change after the insertion check: not(rootHex1 == rootHex2) ## The initial root of the tree (empty tree) must be identical to ## the root of the tree after one insertion followed by a deletion check: rootHex1 == rootHex3 test "hash Nim Wrappers": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() # prepare the input let msg = "Hello".toBytes() hashInput = appendLength(msg) hashInputBuffer = toBuffer(hashInput) # prepare other inputs to the hash function let outputBuffer = default(Buffer) let hashSuccess = hash(rlnInstance.get(), unsafeAddr hashInputBuffer, unsafeAddr outputBuffer) require: hashSuccess let outputArr = cast[ptr array[32, byte]](outputBuffer.`ptr`)[] check: "1e32b3ab545c07c8b4a7ab1ca4f46bc31e4fdc29ac3b240ef1d54b4017a26e4c" == outputArr.inHex() let hashOutput = cast[ptr array[32, byte]] (outputBuffer.`ptr`)[] hashOutputHex = hashOutput.toHex() debug "hash output", hashOutputHex test "hash utils": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # prepare the input let msg = "Hello".toBytes() let hash = rln.hash(msg) check: "1e32b3ab545c07c8b4a7ab1ca4f46bc31e4fdc29ac3b240ef1d54b4017a26e4c" == hash.inHex() test "create a list of membership keys and construct a Merkle tree based on the list": let groupSize = 100 memListRes = createMembershipList(groupSize) require: memListRes.isOk() let (list, root) = memListRes.get() debug "created membership key list", list debug "the Merkle tree root", root check: list.len == groupSize # check the number of keys root.len == HashHexSize # check the size of the calculated tree root test "check correctness of toIdentityCredentials and calcMerkleRoot": let groupKeys = StaticGroupKeys # create a set of IdentityCredentials objects from groupKeys let groupIdCredentialsRes = groupKeys.toIdentityCredentials() require: groupIdCredentialsRes.isOk() let groupIdCredentials = groupIdCredentialsRes.get() # extract the id commitments let groupIDCommitments = groupIdCredentials.mapIt(it.idCommitment) # calculate the Merkle tree root out of the extracted id commitments let rootRes = calcMerkleRoot(groupIDCommitments) require: rootRes.isOk() let root = rootRes.get() debug "groupIdCredentials", groupIdCredentials debug "groupIDCommitments", groupIDCommitments debug "root", root check: # check that the correct number of identity credentials is created groupIdCredentials.len == StaticGroupSize # compare the calculated root against the correct root root == StaticGroupMerkleRoot test "RateLimitProof Protobuf encode/init test": var proof: ZKSNARK merkleRoot: MerkleNode epoch: Epoch shareX: MerkleNode shareY: MerkleNode nullifier: Nullifier rlnIdentifier: RlnIdentifier # populate fields with dummy values for x in proof.mitems: x = 1 for x in merkleRoot.mitems: x = 2 for x in epoch.mitems: x = 3 for x in shareX.mitems: x = 4 for x in shareY.mitems: x = 5 for x in nullifier.mitems: x = 6 for x in rlnIdentifier.mitems: x = 7 let rateLimitProof = RateLimitProof(proof: proof, merkleRoot: merkleRoot, epoch: epoch, shareX: shareX, shareY: shareY, nullifier: nullifier, rlnIdentifier: rlnIdentifier) protobuf = rateLimitProof.encode() decodednsp = RateLimitProof.init(protobuf.buffer) require: decodednsp.isOk() check: decodednsp.value == rateLimitProof test "test proofVerify and proofGen for a valid proof": let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() let # peer's index in the Merkle Tree index = 5'u # create an identity credential idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() var members = newSeq[IDCommitment]() # Create a Merkle tree with random members for i in 0'u..10'u: if (i == index): # insert the current peer's pk members.add(idCredential.idCommitment) else: # create a new identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() members.add(idCredentialRes.get().idCommitment) # Batch the insert let batchInsertRes = rln.insertMembers(0, members) require: batchInsertRes # prepare the message let messageBytes = "Hello".toBytes() # prepare the epoch let epoch = default(Epoch) debug "epoch", epochHex = epoch.inHex() # generate proof let proofRes = rln.proofGen(data = messageBytes, memKeys = idCredential, memIndex = MembershipIndex(index), epoch = epoch) require: proofRes.isOk() let proof = proofRes.value # verify the proof let verified = rln.proofVerify(data = messageBytes, proof = proof, validRoots = @[rln.getMerkleRoot().value()]) # Ensure the proof verification did not error out require: verified.isOk() check: verified.value() == true test "test proofVerify and proofGen for an invalid proof": let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() let # peer's index in the Merkle Tree index = 5'u # create an identity credential idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() # Create a Merkle tree with random members for i in 0'u..10'u: var memberAdded: bool = false if (i == index): # insert the current peer's pk memberAdded = rln.insertMembers(i, @[idCredential.idCommitment]) else: # create a new identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() memberAdded = rln.insertMembers(i, @[idCredentialRes.get().idCommitment]) # check the member is added require: memberAdded # prepare the message let messageBytes = "Hello".toBytes() # prepare the epoch let epoch = default(Epoch) debug "epoch in bytes", epochHex = epoch.inHex() let badIndex = 4 # generate proof let proofRes = rln.proofGen(data = messageBytes, memKeys = idCredential, memIndex = MembershipIndex(badIndex), epoch = epoch) require: proofRes.isOk() let proof = proofRes.value # verify the proof (should not be verified) against the internal RLN tree root let verified = rln.proofVerify(data = messageBytes, proof = proof, validRoots = @[rln.getMerkleRoot().value()]) require: verified.isOk() check: verified.value() == false test "validate roots which are part of the acceptable window": # Setup: # This step consists of creating the rln instance and waku-rln-relay, # Inserting members, and creating a valid proof with the merkle root # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() let rlnRelay = WakuRLNRelay(rlnInstance:rln) let # peer's index in the Merkle Tree. index = 5'u # create an identity credential idCredentialRes = membershipKeyGen(rlnRelay.rlnInstance) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let membershipCount: uint = AcceptableRootWindowSize + 5'u var members = newSeq[IdentityCredential]() # Generate membership keys for i in 0'u..membershipCount: if (i == index): # insert the current peer's pk members.add(idCredential) else: # create a new identity credential let idCredentialRes = rlnRelay.rlnInstance.membershipKeyGen() require: idCredentialRes.isOk() members.add(idCredentialRes.get()) # Batch inserts into the tree let insertedRes = rlnRelay.insertMembers(0, members.mapIt(it.idCommitment)) require: insertedRes.isOk() # Given: # This step includes constructing a valid message with the latest merkle root # prepare the message let messageBytes = "Hello".toBytes() # prepare the epoch let epoch = default(Epoch) debug "epoch in bytes", epochHex = epoch.inHex() # generate proof let validProofRes = rlnRelay.rlnInstance.proofGen(data = messageBytes, memKeys = idCredential, memIndex = MembershipIndex(index), epoch = epoch) require: validProofRes.isOk() let validProof = validProofRes.value # validate the root (should be true) let verified = rlnRelay.validateRoot(validProof.merkleRoot) require: verified == true # When: # This test depends on the local merkle tree root being part of a # acceptable set of roots, which is denoted by AcceptableRootWindowSize # The following action is equivalent to a member being removed upon listening to the events emitted by the contract # Progress the local tree by removing members for i in 0..AcceptableRootWindowSize - 2: let res = rlnRelay.removeMember(MembershipIndex(i)) # Ensure the local tree root has changed let currentMerkleRoot = rlnRelay.rlnInstance.getMerkleRoot() require: res.isOk() currentMerkleRoot.isOk() currentMerkleRoot.value() != validProof.merkleRoot # Then: # we try to verify a root against this window, # which should return true let olderRootVerified = rlnRelay.validateRoot(validProof.merkleRoot) check: olderRootVerified == true test "invalidate roots which are not part of the acceptable window": # Setup: # This step consists of creating the rln instance and waku-rln-relay, # Inserting members, and creating a valid proof with the merkle root require: AcceptableRootWindowSize < 10 # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() let rlnRelay = WakuRLNRelay(rlnInstance:rln) let # peer's index in the Merkle Tree. index = 6'u # create an identity credential idCredentialRes = membershipKeyGen(rlnRelay.rlnInstance) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let membershipCount: uint = AcceptableRootWindowSize + 5'u # Create a Merkle tree with random members for i in 0'u..membershipCount: var memberIsAdded: RlnRelayResult[void] if (i == index): # insert the current peer's pk memberIsAdded = rlnRelay.insertMembers(i, @[idCredential.idCommitment]) else: # create a new identity credential let idCredentialRes = rlnRelay.rlnInstance.membershipKeyGen() require: idCredentialRes.isOk() memberIsAdded = rlnRelay.insertMembers(i, @[idCredentialRes.get().idCommitment]) # require that the member is added require: memberIsAdded.isOk() # Given: # This step includes constructing a valid message with the latest merkle root # prepare the message let messageBytes = "Hello".toBytes() # prepare the epoch let epoch = default(Epoch) debug "epoch in bytes", epochHex = epoch.inHex() # generate proof let validProofRes = rlnRelay.rlnInstance.proofGen(data = messageBytes, memKeys = idCredential, memIndex = MembershipIndex(index), epoch = epoch) require: validProofRes.isOk() let validProof = validProofRes.value # validate the root (should be true) let verified = rlnRelay.validateRoot(validProof.merkleRoot) require: verified == true # When: # This test depends on the local merkle tree root being part of a # acceptable set of roots, which is denoted by AcceptableRootWindowSize # The following action is equivalent to a member being removed upon listening to the events emitted by the contract # Progress the local tree by removing members for i in 0..AcceptableRootWindowSize: discard rlnRelay.removeMember(MembershipIndex(i)) # Ensure the local tree root has changed let currentMerkleRoot = rlnRelay.rlnInstance.getMerkleRoot() require: currentMerkleRoot.isOk() currentMerkleRoot.value() != validProof.merkleRoot # Then: # we try to verify a proof against this window, # which should return false let olderRootVerified = rlnRelay.validateRoot(validProof.merkleRoot) check: olderRootVerified == false test "toEpoch and fromEpoch consistency check": # check edge cases let epoch = uint64.high # rln epoch epochBytes = epoch.toEpoch() decodedEpoch = epochBytes.fromEpoch() check: epoch == decodedEpoch debug "encoded and decode time", epoch = epoch, epochBytes = epochBytes, decodedEpoch = decodedEpoch test "Epoch comparison, epoch1 > epoch2": # check edge cases let time1 = uint64.high time2 = uint64.high - 1 epoch1 = time1.toEpoch() epoch2 = time2.toEpoch() check: absDiff(epoch1, epoch2) == uint64(1) absDiff(epoch2, epoch1) == uint64(1) test "updateLog and hasDuplicate tests": let wakurlnrelay = WakuRLNRelay() epoch = getCurrentEpoch() # create some dummy nullifiers and secret shares var nullifier1: Nullifier for index, x in nullifier1.mpairs: nullifier1[index] = 1 var shareX1: MerkleNode for index, x in shareX1.mpairs: shareX1[index] = 1 let shareY1 = shareX1 var nullifier2: Nullifier for index, x in nullifier2.mpairs: nullifier2[index] = 2 var shareX2: MerkleNode for index, x in shareX2.mpairs: shareX2[index] = 2 let shareY2 = shareX2 let nullifier3 = nullifier1 var shareX3: MerkleNode for index, x in shareX3.mpairs: shareX3[index] = 3 let shareY3 = shareX3 proc encodeAndGetBuf(proof: RateLimitProof): seq[byte] = return proof.encode().buffer let wm1 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier1, shareX: shareX1, shareY: shareY1).encodeAndGetBuf()) wm2 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier2, shareX: shareX2, shareY: shareY2).encodeAndGetBuf()) wm3 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier3, shareX: shareX3, shareY: shareY3).encodeAndGetBuf()) # check whether hasDuplicate correctly finds records with the same nullifiers but different secret shares # no duplicate for wm1 should be found, since the log is empty let result1 = wakurlnrelay.hasDuplicate(wm1) require: result1.isOk() # no duplicate is found result1.value == false # add it to the log discard wakurlnrelay.updateLog(wm1) # # no duplicate for wm2 should be found, its nullifier differs from wm1 let result2 = wakurlnrelay.hasDuplicate(wm2) require: result2.isOk() # no duplicate is found result2.value == false # add it to the log discard wakurlnrelay.updateLog(wm2) # wm3 has the same nullifier as wm1 but different secret shares, it should be detected as duplicate let result3 = wakurlnrelay.hasDuplicate(wm3) require: result3.isOk() check: # it is a duplicate result3.value == true test "validateMessage test": # setup a wakurlnrelay peer with a static group---------- # create a group of 100 membership keys let memListRes = createMembershipList(100) require: memListRes.isOk() let (groupKeys, _) = memListRes.get() # convert the keys to IdentityCredential structs groupIdCredentialsRes = groupKeys.toIdentityCredentials() require: groupIdCredentialsRes.isOk() let groupIdCredentials = groupIdCredentialsRes.get() # extract the id commitments let groupIDCommitments = groupIdCredentials.mapIt(it.idCommitment) debug "groupIdCredentials", groupIdCredentials debug "groupIDCommitments", groupIDCommitments # index indicates the position of an identity credential in the static list of group keys i.e., groupIdCredentials # the corresponding identity credential will be used to mount rlnRelay on the current node # index also represents the index of the leaf in the Merkle tree that contains node's commitment key let index = MembershipIndex(5) # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() let wakuRlnRelay = WakuRLNRelay(membershipIndex: index, identityCredential: groupIdCredentials[index], rlnInstance: rln) # add members let commitmentAddRes = wakuRlnRelay.addAll(groupIDCommitments) require: commitmentAddRes.isOk() # get the current epoch time let time = epochTime() # create some messages from the same peer and append rln proof to them, except wm4 var wm1 = WakuMessage(payload: "Valid message".toBytes()) # another message in the same epoch as wm1, it will break the messaging rate limit wm2 = WakuMessage(payload: "Spam".toBytes()) # wm3 points to the next epoch wm3 = WakuMessage(payload: "Valid message".toBytes()) wm4 = WakuMessage(payload: "Invalid message".toBytes()) let proofAdded1 = wakuRlnRelay.appendRLNProof(wm1, time) proofAdded2 = wakuRlnRelay.appendRLNProof(wm2, time) proofAdded3 = wakuRlnRelay.appendRLNProof(wm3, time+EpochUnitSeconds) # ensure proofs are added require: proofAdded1 proofAdded2 proofAdded3 # validate messages # validateMessage proc checks the validity of the message fields and adds it to the log (if valid) let msgValidate1 = wakuRlnRelay.validateMessage(wm1, some(time)) # wm2 is published within the same Epoch as wm1 and should be found as spam msgValidate2 = wakuRlnRelay.validateMessage(wm2, some(time)) # a valid message should be validated successfully msgValidate3 = wakuRlnRelay.validateMessage(wm3, some(time)) # wm4 has no rln proof and should not be validated msgValidate4 = wakuRlnRelay.validateMessage(wm4, some(time)) check: msgValidate1 == MessageValidationResult.Valid msgValidate2 == MessageValidationResult.Spam msgValidate3 == MessageValidationResult.Valid msgValidate4 == MessageValidationResult.Invalid test "toIDCommitment and toUInt256": # create an instance of rln let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let rln = rlnInstance.get() # create an idendity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() # convert the idCommitment to UInt256 let idCUInt = idCredential.idCommitment.toUInt256() # convert the UInt256 back to ICommitment let idCommitment = toIDCommitment(idCUInt) # check that the conversion has not distorted the original value check: idCredential.idCommitment == idCommitment test "Read/Write RLN credentials": # create an RLN instance let rlnInstance = createRLNInstance() require: rlnInstance.isOk() let idCredentialRes = membershipKeyGen(rlnInstance.get()) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let empty = default(array[32, byte]) require: idCredential.idTrapdoor.len == 32 idCredential.idNullifier.len == 32 idCredential.idSecretHash.len == 32 idCredential.idCommitment.len == 32 idCredential.idTrapdoor != empty idCredential.idNullifier != empty idCredential.idSecretHash != empty idCredential.idCommitment != empty debug "the generated identity credential: ", idCredential let index = MembershipIndex(1) let rlnMembershipCredentials = RlnMembershipCredentials(identityCredential: idCredential, rlnIndex: index) let password = "%m0um0ucoW%" let filepath = "./testRLNCredentials.txt" defer: removeFile(filepath) # Write RLN credentials require: writeRlnCredentials(filepath, rlnMembershipCredentials, password).isOk() let readCredentialsResult = readRlnCredentials(filepath, password) require: readCredentialsResult.isOk() let credentials = readCredentialsResult.get() require: credentials.isSome() check: credentials.get().identityCredential == idCredential credentials.get().rlnIndex == index test "histogram static bucket generation": let buckets = generateBucketsForHistogram(10) check: buckets.len == 5 buckets == [2.0, 4.0, 6.0, 8.0, 10.0]