{.used.} import std/[options, os, sequtils, times, tempfiles], stew/byteutils, stew/shims/net as stewNet, testutils/unittests, chronos, chronicles, stint, libp2p/crypto/crypto import waku/[ waku_core, waku_rln_relay, waku_rln_relay/rln, waku_rln_relay/protocol_metrics, waku_keystore, ], ../testlib/common, ./rln/waku_rln_relay_utils suite "Waku rln relay": test "key_gen Nim Wrappers": let merkleDepth: csize_t = 20 let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() # keysBufferPtr will hold the generated identity credential i.e., id trapdoor, nullifier, secret hash and commitment var keysBuffer: Buffer let keysBufferPtr = addr(keysBuffer) done = key_gen(rlnInstance.get(), keysBufferPtr) require: # check whether the keys are generated successfully done let generatedKeys = cast[ptr array[4 * 32, byte]](keysBufferPtr.`ptr`)[] check: # the id trapdoor, nullifier, secert hash and commitment together are 4*32 bytes generatedKeys.len == 4 * 32 debug "generated keys: ", generatedKeys test "membership Key Generation": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let idCredentialsRes = membershipKeyGen(rlnInstance.get()) require: idCredentialsRes.isOk() let idCredential = idCredentialsRes.get() let empty = default(array[32, byte]) check: idCredential.idTrapdoor.len == 32 idCredential.idNullifier.len == 32 idCredential.idSecretHash.len == 32 idCredential.idCommitment.len == 32 idCredential.idTrapdoor != empty idCredential.idNullifier != empty idCredential.idSecretHash != empty idCredential.idCommitment != empty debug "the generated identity credential: ", idCredential test "getRoot Nim binding": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() # read the Merkle Tree root let root1 {.noinit.}: Buffer = Buffer() rootPtr1 = unsafeAddr(root1) getRootSuccessful1 = getRoot(rlnInstance.get(), rootPtr1) require: getRootSuccessful1 root1.len == 32 # read the Merkle Tree root let root2 {.noinit.}: Buffer = Buffer() rootPtr2 = unsafeAddr(root2) getRootSuccessful2 = getRoot(rlnInstance.get(), rootPtr2) require: getRootSuccessful2 root2.len == 32 let rootValue1 = cast[ptr array[32, byte]](root1.`ptr`) let rootHex1 = rootValue1[].inHex let rootValue2 = cast[ptr array[32, byte]](root2.`ptr`) let rootHex2 = rootValue2[].inHex # the two roots must be identical check: rootHex1 == rootHex2 test "getMerkleRoot utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 = getMerkleRoot(rln) require: root1.isOk() let rootHex1 = root1.value().inHex # read the Merkle Tree root let root2 = getMerkleRoot(rln) require: root2.isOk() let rootHex2 = root2.value().inHex # the two roots must be identical check: rootHex1 == rootHex2 test "update_next_member Nim Wrapper": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let pkBuffer = toBuffer(idCredential.idCommitment) let pkBufferPtr = unsafeAddr(pkBuffer) # add the member to the tree let memberAdded = updateNextMember(rln, pkBufferPtr) check: memberAdded test "getMember Nim wrapper": let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let pkBuffer = toBuffer(idCredential.idCommitment) let pkBufferPtr = unsafeAddr(pkBuffer) let root1 {.noinit.}: Buffer = Buffer() rootPtr1 = unsafeAddr(root1) getRootSuccessful1 = getRoot(rlnInstance.get(), rootPtr1) # add the member to the tree let memberAdded = updateNextMember(rln, pkBufferPtr) require: memberAdded let leafRes = getMember(rln, 0) require: leafRes.isOk() let leaf = leafRes.get() let leafHex = leaf.inHex() check: leafHex == idCredential.idCommitment.inHex() test "delete_member Nim wrapper": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() # generate an identity credential let rln = rlnInstance.get() let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() rln.insertMember(idCredentialRes.get().idCommitment) # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = rln.deleteMember(deletedMemberIndex) check: deletionSuccess test "insertMembers rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() check: rln.insertMembers(0, @[idCredentialRes.get().idCommitment]) rln.leavesSet() == 1 test "insertMember rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() check: rln.insertMember(idCredentialRes.get().idCommitment) test "removeMember rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() rln.insertMember(idCredentialRes.get().idCommitment) check: rln.removeMember(MembershipIndex(0)) test "setMetadata rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() check: rln .setMetadata( RlnMetadata( lastProcessedBlock: 128, chainId: 1155511, contractAddress: "0x9c09146844c1326c2dbc41c451766c7138f88155", ) ) .isOk() test "getMetadata rln utils": # create an RLN instance which also includes an empty Merkle tree let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() require: rln .setMetadata( RlnMetadata( lastProcessedBlock: 128, chainId: 1155511, contractAddress: "0x9c09146844c1326c2dbc41c451766c7138f88155", ) ) .isOk() let metadataOpt = rln.getMetadata().valueOr: raiseAssert $error assert metadataOpt.isSome(), "metadata is not set" let metadata = metadataOpt.get() check: metadata.lastProcessedBlock == 128 metadata.chainId == 1155511 metadata.contractAddress == "0x9c09146844c1326c2dbc41c451766c7138f88155" test "getMetadata: empty rln metadata": # create an RLN instance which also includes an empty Merkle tree let rln = createRLNInstanceWrapper().valueOr: raiseAssert $error let metadata = rln.getMetadata().valueOr: raiseAssert $error check: metadata.isNone() test "Merkle tree consistency check between deletion and insertion": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 {.noinit.}: Buffer = Buffer() rootPtr1 = unsafeAddr(root1) getRootSuccessful1 = getRoot(rln, rootPtr1) require: getRootSuccessful1 root1.len == 32 # generate an identity credential let idCredentialRes = membershipKeyGen(rln) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let pkBuffer = toBuffer(idCredential.idCommitment) let pkBufferPtr = unsafeAddr(pkBuffer) # add the member to the tree let memberAdded = updateNextMember(rln, pkBufferPtr) require: memberAdded # read the Merkle Tree root after insertion let root2 {.noinit.}: Buffer = Buffer() rootPtr2 = unsafeAddr(root2) getRootSuccessful = getRoot(rln, rootPtr2) require: getRootSuccessful root2.len == 32 # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = deleteMember(rln, deletedMemberIndex) require: deletionSuccess # read the Merkle Tree root after the deletion let root3 {.noinit.}: Buffer = Buffer() rootPtr3 = unsafeAddr(root3) getRootSuccessful3 = getRoot(rln, rootPtr3) require: getRootSuccessful3 root3.len == 32 let rootValue1 = cast[ptr array[32, byte]](root1.`ptr`) let rootHex1 = rootValue1[].inHex debug "The initial root", rootHex1 let rootValue2 = cast[ptr array[32, byte]](root2.`ptr`) let rootHex2 = rootValue2[].inHex debug "The root after insertion", rootHex2 let rootValue3 = cast[ptr array[32, byte]](root3.`ptr`) let rootHex3 = rootValue3[].inHex debug "The root after deletion", rootHex3 # the root must change after the insertion check: not (rootHex1 == rootHex2) ## The initial root of the tree (empty tree) must be identical to ## the root of the tree after one insertion followed by a deletion check: rootHex1 == rootHex3 test "Merkle tree consistency check between deletion and insertion using rln utils": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # read the Merkle Tree root let root1 = rln.getMerkleRoot() require: root1.isOk() let rootHex1 = root1.value().inHex() # generate an identity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() let memberInserted = rln.insertMembers(0, @[idCredentialRes.get().idCommitment]) require: memberInserted # read the Merkle Tree root after insertion let root2 = rln.getMerkleRoot() require: root2.isOk() let rootHex2 = root2.value().inHex() # delete the first member let deletedMemberIndex = MembershipIndex(0) let deletionSuccess = rln.removeMember(deletedMemberIndex) require: deletionSuccess # read the Merkle Tree root after the deletion let root3 = rln.getMerkleRoot() require: root3.isOk() let rootHex3 = root3.value().inHex() debug "The initial root", rootHex1 debug "The root after insertion", rootHex2 debug "The root after deletion", rootHex3 # the root must change after the insertion check: not (rootHex1 == rootHex2) ## The initial root of the tree (empty tree) must be identical to ## the root of the tree after one insertion followed by a deletion check: rootHex1 == rootHex3 test "hash Nim Wrappers": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() # prepare the input let msg = "Hello".toBytes() hashInput = encodeLengthPrefix(msg) hashInputBuffer = toBuffer(hashInput) # prepare other inputs to the hash function let outputBuffer = default(Buffer) let hashSuccess = sha256(unsafeAddr hashInputBuffer, unsafeAddr outputBuffer) require: hashSuccess let outputArr = cast[ptr array[32, byte]](outputBuffer.`ptr`)[] check: "1e32b3ab545c07c8b4a7ab1ca4f46bc31e4fdc29ac3b240ef1d54b4017a26e4c" == outputArr.inHex() let hashOutput = cast[ptr array[32, byte]](outputBuffer.`ptr`)[] hashOutputHex = hashOutput.toHex() debug "hash output", hashOutputHex test "sha256 hash utils": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # prepare the input let msg = "Hello".toBytes() let hashRes = sha256(msg) check: hashRes.isOk() "1e32b3ab545c07c8b4a7ab1ca4f46bc31e4fdc29ac3b240ef1d54b4017a26e4c" == hashRes.get().inHex() test "poseidon hash utils": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # prepare the input let msg = @[ "126f4c026cd731979365f79bd345a46d673c5a3f6f588bdc718e6356d02b6fdc".toBytes(), "1f0e5db2b69d599166ab16219a97b82b662085c93220382b39f9f911d3b943b1".toBytes(), ] let hashRes = poseidon(msg) # Value taken from zerokit check: hashRes.isOk() "28a15a991fe3d2a014485c7fa905074bfb55c0909112f865ded2be0a26a932c3" == hashRes.get().inHex() test "create a list of membership keys and construct a Merkle tree based on the list": let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() let groupSize = 100 memListRes = rln.createMembershipList(groupSize) require: memListRes.isOk() let (list, root) = memListRes.get() debug "created membership key list", number_of_keys = list.len debug "Merkle tree root", size_calculated_tree_root = root.len check: list.len == groupSize # check the number of keys root.len == HashHexSize # check the size of the calculated tree root test "check correctness of toIdentityCredentials": let groupKeys = StaticGroupKeys # create a set of IdentityCredentials objects from groupKeys let groupIdCredentialsRes = groupKeys.toIdentityCredentials() require: groupIdCredentialsRes.isOk() let groupIdCredentials = groupIdCredentialsRes.get() # extract the id commitments let groupIDCommitments = groupIdCredentials.mapIt(it.idCommitment) # calculate the Merkle tree root out of the extracted id commitments let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # create a Merkle tree let rateCommitments = groupIDCommitments.mapIt(RateCommitment(idCommitment: it, userMessageLimit: 20)) let leaves = rateCommitments.toLeaves().valueOr: raiseAssert $error let membersAdded = rln.insertMembers(0, leaves) assert membersAdded, "members should be added" let rawRoot = rln.getMerkleRoot().valueOr: raiseAssert $error let root = rawRoot.inHex() debug "groupIdCredentials", num_group_id_credentials = groupIdCredentials.len # debug "groupIDCommitments", leaving commented in case needed to debug in the future # groupIDCommitments = groupIDCommitments.mapIt(it.inHex()) debug "root", root check: # check that the correct number of identity credentials is created groupIdCredentials.len == StaticGroupSize # compare the calculated root against the correct root root == StaticGroupMerkleRoot test "RateLimitProof Protobuf encode/init test": var proof: ZKSNARK merkleRoot: MerkleNode epoch: Epoch shareX: MerkleNode shareY: MerkleNode nullifier: Nullifier rlnIdentifier: RlnIdentifier # populate fields with dummy values for x in proof.mitems: x = 1 for x in merkleRoot.mitems: x = 2 for x in epoch.mitems: x = 3 for x in shareX.mitems: x = 4 for x in shareY.mitems: x = 5 for x in nullifier.mitems: x = 6 for x in rlnIdentifier.mitems: x = 7 let rateLimitProof = RateLimitProof( proof: proof, merkleRoot: merkleRoot, epoch: epoch, shareX: shareX, shareY: shareY, nullifier: nullifier, rlnIdentifier: rlnIdentifier, ) protobuf = rateLimitProof.encode() decodednsp = RateLimitProof.init(protobuf.buffer) require: decodednsp.isOk() check: decodednsp.value == rateLimitProof test "toEpoch and fromEpoch consistency check": # check edge cases let epoch = uint64.high # rln epoch epochBytes = epoch.toEpoch() decodedEpoch = epochBytes.fromEpoch() check: epoch == decodedEpoch debug "encoded and decode time", epoch = epoch, epochBytes = epochBytes, decodedEpoch = decodedEpoch test "Epoch comparison, epoch1 > epoch2": # check edge cases let time1 = uint64.high time2 = uint64.high - 1 epoch1 = time1.toEpoch() epoch2 = time2.toEpoch() check: absDiff(epoch1, epoch2) == uint64(1) absDiff(epoch2, epoch1) == uint64(1) test "updateLog and hasDuplicate tests": let wakuRlnRelay = WakuRLNRelay() epoch = wakuRlnRelay.getCurrentEpoch() # create some dummy nullifiers and secret shares var nullifier1: Nullifier for index, x in nullifier1.mpairs: nullifier1[index] = 1 var shareX1: MerkleNode for index, x in shareX1.mpairs: shareX1[index] = 1 let shareY1 = shareX1 var nullifier2: Nullifier for index, x in nullifier2.mpairs: nullifier2[index] = 2 var shareX2: MerkleNode for index, x in shareX2.mpairs: shareX2[index] = 2 let shareY2 = shareX2 let nullifier3 = nullifier1 var shareX3: MerkleNode for index, x in shareX3.mpairs: shareX3[index] = 3 let shareY3 = shareX3 proc encodeAndGetBuf(proof: RateLimitProof): seq[byte] = return proof.encode().buffer let proof1 = RateLimitProof( epoch: epoch, nullifier: nullifier1, shareX: shareX1, shareY: shareY1 ) wm1 = WakuMessage(proof: proof1.encodeAndGetBuf()) proof2 = RateLimitProof( epoch: epoch, nullifier: nullifier2, shareX: shareX2, shareY: shareY2 ) wm2 = WakuMessage(proof: proof2.encodeAndGetBuf()) proof3 = RateLimitProof( epoch: epoch, nullifier: nullifier3, shareX: shareX3, shareY: shareY3 ) wm3 = WakuMessage(proof: proof3.encodeAndGetBuf()) # check whether hasDuplicate correctly finds records with the same nullifiers but different secret shares # no duplicate for proof1 should be found, since the log is empty let proofMetadata1 = proof1.extractMetadata().tryGet() let isDuplicate1 = wakuRlnRelay.hasDuplicate(epoch, proofMetadata1).valueOr: raiseAssert $error assert isDuplicate1 == false, "no duplicate should be found" # add it to the log discard wakuRlnRelay.updateLog(epoch, proofMetadata1) # no duplicate for proof2 should be found, its nullifier differs from proof1 let proofMetadata2 = proof2.extractMetadata().tryGet() let isDuplicate2 = wakuRlnRelay.hasDuplicate(epoch, proofMetadata2).valueOr: raiseAssert $error # no duplicate is found assert isDuplicate2 == false, "no duplicate should be found" # add it to the log discard wakuRlnRelay.updateLog(epoch, proofMetadata2) # proof3 has the same nullifier as proof1 but different secret shares, it should be detected as duplicate let isDuplicate3 = wakuRlnRelay.hasDuplicate( epoch, proof3.extractMetadata().tryGet() ).valueOr: raiseAssert $error # it is a duplicate assert isDuplicate3, "duplicate should be found" asyncTest "validateMessageAndUpdateLog test": let index = MembershipIndex(5) let wakuRlnConfig = WakuRlnConfig( rlnRelayDynamic: false, rlnRelayCredIndex: some(index), rlnRelayUserMessageLimit: 1, rlnEpochSizeSec: 1, rlnRelayTreePath: genTempPath("rln_tree", "waku_rln_relay_2"), ) let wakuRlnRelay = (await WakuRlnRelay.new(wakuRlnConfig)).valueOr: raiseAssert $error # get the current epoch time let time = epochTime() # create some messages from the same peer and append rln proof to them, except wm4 var wm1 = WakuMessage(payload: "Valid message".toBytes()) # another message in the same epoch as wm1, it will break the messaging rate limit wm2 = WakuMessage(payload: "Spam".toBytes()) # wm3 points to the next epoch wm3 = WakuMessage(payload: "Valid message".toBytes()) wm4 = WakuMessage(payload: "Invalid message".toBytes()) wakuRlnRelay.unsafeAppendRLNProof(wm1, time).isOkOr: raiseAssert $error wakuRlnRelay.unsafeAppendRLNProof(wm2, time).isOkOr: raiseAssert $error wakuRlnRelay.unsafeAppendRLNProof(wm3, time + float64(wakuRlnRelay.rlnEpochSizeSec)).isOkOr: raiseAssert $error # validate messages # validateMessage proc checks the validity of the message fields and adds it to the log (if valid) let msgValidate1 = wakuRlnRelay.validateMessageAndUpdateLog(wm1, some(time)) # wm2 is published within the same Epoch as wm1 and should be found as spam msgValidate2 = wakuRlnRelay.validateMessageAndUpdateLog(wm2, some(time)) # a valid message should be validated successfully msgValidate3 = wakuRlnRelay.validateMessageAndUpdateLog(wm3, some(time)) # wm4 has no rln proof and should not be validated msgValidate4 = wakuRlnRelay.validateMessageAndUpdateLog(wm4, some(time)) check: msgValidate1 == MessageValidationResult.Valid msgValidate2 == MessageValidationResult.Spam msgValidate3 == MessageValidationResult.Valid msgValidate4 == MessageValidationResult.Invalid asyncTest "validateMessageAndUpdateLog: multiple senders with same external nullifier": let index1 = MembershipIndex(5) let index2 = MembershipIndex(6) let rlnConf1 = WakuRlnConfig( rlnRelayDynamic: false, rlnRelayCredIndex: some(index1), rlnRelayUserMessageLimit: 1, rlnEpochSizeSec: 1, rlnRelayTreePath: genTempPath("rln_tree", "waku_rln_relay_3"), ) let wakuRlnRelay1 = (await WakuRlnRelay.new(rlnConf1)).valueOr: raiseAssert "failed to create waku rln relay: " & $error let rlnConf2 = WakuRlnConfig( rlnRelayDynamic: false, rlnRelayCredIndex: some(index2), rlnRelayUserMessageLimit: 1, rlnEpochSizeSec: 1, rlnRelayTreePath: genTempPath("rln_tree", "waku_rln_relay_4"), ) let wakuRlnRelay2 = (await WakuRlnRelay.new(rlnConf2)).valueOr: raiseAssert "failed to create waku rln relay: " & $error # get the current epoch time let time = epochTime() # create messages from different peers and append rln proofs to them var wm1 = WakuMessage(payload: "Valid message from sender 1".toBytes()) # another message in the same epoch as wm1, it will break the messaging rate limit wm2 = WakuMessage(payload: "Valid message from sender 2".toBytes()) wakuRlnRelay1.appendRLNProof(wm1, time).isOkOr: raiseAssert $error wakuRlnRelay2.appendRLNProof(wm2, time).isOkOr: raiseAssert $error # validate messages # validateMessage proc checks the validity of the message fields and adds it to the log (if valid) let msgValidate1 = wakuRlnRelay1.validateMessageAndUpdateLog(wm1, some(time)) # since this message is from a different sender, it should be validated successfully msgValidate2 = wakuRlnRelay1.validateMessageAndUpdateLog(wm2, some(time)) check: msgValidate1 == MessageValidationResult.Valid msgValidate2 == MessageValidationResult.Valid test "toIDCommitment and toUInt256": # create an instance of rln let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let rln = rlnInstance.get() # create an idendity credential let idCredentialRes = rln.membershipKeyGen() require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() # convert the idCommitment to UInt256 let idCUInt = idCredential.idCommitment.toUInt256() # convert the UInt256 back to ICommitment let idCommitment = toIDCommitment(idCUInt) # check that the conversion has not distorted the original value check: idCredential.idCommitment == idCommitment test "Read/Write RLN credentials": # create an RLN instance let rlnInstance = createRLNInstanceWrapper() require: rlnInstance.isOk() let idCredentialRes = membershipKeyGen(rlnInstance.get()) require: idCredentialRes.isOk() let idCredential = idCredentialRes.get() let empty = default(array[32, byte]) require: idCredential.idTrapdoor.len == 32 idCredential.idNullifier.len == 32 idCredential.idSecretHash.len == 32 idCredential.idCommitment.len == 32 idCredential.idTrapdoor != empty idCredential.idNullifier != empty idCredential.idSecretHash != empty idCredential.idCommitment != empty debug "the generated identity credential: ", idCredential let index = MembershipIndex(1) let keystoreMembership = KeystoreMembership( membershipContract: MembershipContract( chainId: "5", address: "0x0123456789012345678901234567890123456789" ), treeIndex: index, identityCredential: idCredential, ) let password = "%m0um0ucoW%" let filepath = "./testRLNCredentials.txt" defer: removeFile(filepath) # Write RLN credentials require: addMembershipCredentials( path = filepath, membership = keystoreMembership, password = password, appInfo = RLNAppInfo, ) .isOk() let readKeystoreRes = getMembershipCredentials( path = filepath, password = password, # here the query would not include # the identityCredential, # since it is not part of the query # but have used the same value # to avoid re-declaration query = keystoreMembership, appInfo = RLNAppInfo, ) assert readKeystoreRes.isOk(), $readKeystoreRes.error # getMembershipCredentials returns the credential in the keystore which matches # the query, in this case the query is = # chainId = "5" and # address = "0x0123456789012345678901234567890123456789" and # treeIndex = 1 let readKeystoreMembership = readKeystoreRes.get() check: readKeystoreMembership == keystoreMembership test "histogram static bucket generation": let buckets = generateBucketsForHistogram(10) check: buckets.len == 5 buckets == [2.0, 4.0, 6.0, 8.0, 10.0] asyncTest "nullifierLog clearing only after epoch has passed": let index = MembershipIndex(0) proc runTestForEpochSizeSec(rlnEpochSizeSec: uint) {.async.} = let wakuRlnConfig = WakuRlnConfig( rlnRelayDynamic: false, rlnRelayCredIndex: some(index), rlnRelayUserMessageLimit: 1, rlnEpochSizeSec: rlnEpochSizeSec, rlnRelayTreePath: genTempPath("rln_tree", "waku_rln_relay_4"), ) let wakuRlnRelay = (await WakuRlnRelay.new(wakuRlnConfig)).valueOr: raiseAssert $error let rlnMaxEpochGap = wakuRlnRelay.rlnMaxEpochGap let testProofMetadata = default(ProofMetadata) let testProofMetadataTable = {testProofMetadata.nullifier: testProofMetadata}.toTable() for i in 0 .. rlnMaxEpochGap: # we add epochs to the nullifierLog let testEpoch = wakuRlnRelay.calcEpoch(epochTime() + float(rlnEpochSizeSec * i)) wakuRlnRelay.nullifierLog[testEpoch] = testProofMetadataTable check: wakuRlnRelay.nullifierLog.len().uint == i + 1 check: wakuRlnRelay.nullifierLog.len().uint == rlnMaxEpochGap + 1 # clearing it now will remove 1 epoch wakuRlnRelay.clearNullifierLog() check: wakuRlnRelay.nullifierLog.len().uint == rlnMaxEpochGap var testEpochSizes: seq[uint] = @[1, 5, 10, 30, 60, 600] for i in testEpochSizes: await runTestForEpochSizeSec(i)