# Waku Noise Protocols for Waku Payload Encryption ## See spec for more details: ## https://github.com/vacp2p/rfc/tree/master/content/docs/rfcs/35 ## ## Implementation partially inspired by noise-libp2p: ## https://github.com/status-im/nim-libp2p/blob/master/libp2p/protocols/secure/noise.nim {.push raises: [Defect].} import std/[options, tables] import chronos import chronicles import bearssl import strutils import stew/[results, endians2] import nimcrypto/[utils, sha2, hmac] import libp2p/utility import libp2p/errors import libp2p/crypto/[crypto, chacha20poly1305, curve25519] logScope: topics = "wakunoise" ################################################################# # Constants and data structures const # EmptyKey represents a non-initialized ChaChaPolyKey EmptyKey = default(ChaChaPolyKey) # The maximum ChaChaPoly allowed nonce in Noise Handshakes NonceMax = uint64.high - 1 type # Default underlying elliptic curve arithmetic (useful for switching to multiple ECs) # Current default is Curve25519 EllipticCurveKey = Curve25519Key # An EllipticCurveKey (public, private) key pair KeyPair* = object privateKey: EllipticCurveKey publicKey: EllipticCurveKey # A Noise public key is a public key exchanged during Noise handshakes (no private part) # This follows https://rfc.vac.dev/spec/35/#public-keys-serialization # pk contains the X coordinate of the public key, if unencrypted (this implies flag = 0) # or the encryption of the X coordinate concatenated with the authorization tag, if encrypted (this implies flag = 1) # Note: besides encryption, flag can be used to distinguish among multiple supported Elliptic Curves NoisePublicKey* = object flag: uint8 pk: seq[byte] # A ChaChaPoly ciphertext (data) + authorization tag (tag) ChaChaPolyCiphertext* = object data*: seq[byte] tag*: ChaChaPolyTag # A ChaChaPoly Cipher State containing key (k), nonce (nonce) and associated data (ad) ChaChaPolyCipherState* = object k: ChaChaPolyKey nonce: ChaChaPolyNonce ad: seq[byte] # PayloadV2 defines an object for Waku payloads with version 2 as in # https://rfc.vac.dev/spec/35/#public-keys-serialization # It contains a protocol ID field, the handshake message (for Noise handshakes) and # a transport message (for Noise handshakes and ChaChaPoly encryptions) PayloadV2* = object protocolId: uint8 handshakeMessage: seq[NoisePublicKey] transportMessage: seq[byte] # Some useful error types NoiseError* = object of LPError NoiseHandshakeError* = object of NoiseError NoiseEmptyChaChaPolyInput* = object of NoiseError NoiseDecryptTagError* = object of NoiseError NoiseNonceMaxError* = object of NoiseError NoisePublicKeyError* = object of NoiseError NoiseMalformedHandshake* = object of NoiseError ################################################################# # Utilities # Generates random byte sequences of given size proc randomSeqByte*(rng: var BrHmacDrbgContext, size: int): seq[byte] = var output = newSeq[byte](size.uint32) brHmacDrbgGenerate(rng, output) return output # Generate random (public, private) Elliptic Curve key pairs proc genKeyPair*(rng: var BrHmacDrbgContext): KeyPair = var keyPair: KeyPair keyPair.privateKey = EllipticCurveKey.random(rng) keyPair.publicKey = keyPair.privateKey.public() return keyPair ################################################################# # ChaChaPoly Symmetric Cipher # ChaChaPoly encryption # It takes a Cipher State (with key, nonce, and associated data) and encrypts a plaintext # The cipher state in not changed proc encrypt*( state: ChaChaPolyCipherState, plaintext: openArray[byte]): ChaChaPolyCiphertext {.noinit, raises: [Defect, NoiseEmptyChaChaPolyInput].} = # If plaintext is empty, we raise an error if plaintext == @[]: raise newException(NoiseEmptyChaChaPolyInput, "Tried to encrypt empty plaintext") var ciphertext: ChaChaPolyCiphertext # Since ChaChaPoly's library "encrypt" primitive directly changes the input plaintext to the ciphertext, # we copy the plaintext into the ciphertext variable and we pass the latter to encrypt ciphertext.data.add plaintext #TODO: add padding # ChaChaPoly.encrypt takes as input: the key (k), the nonce (nonce), a data structure for storing the computed authorization tag (tag), # the plaintext (overwritten to ciphertext) (data), the associated data (ad) ChaChaPoly.encrypt(state.k, state.nonce, ciphertext.tag, ciphertext.data, state.ad) return ciphertext # ChaChaPoly decryption # It takes a Cipher State (with key, nonce, and associated data) and decrypts a ciphertext # The cipher state is not changed proc decrypt*( state: ChaChaPolyCipherState, ciphertext: ChaChaPolyCiphertext): seq[byte] {.raises: [Defect, NoiseEmptyChaChaPolyInput, NoiseDecryptTagError].} = # If ciphertext is empty, we raise an error if ciphertext.data == @[]: raise newException(NoiseEmptyChaChaPolyInput, "Tried to decrypt empty ciphertext") var # The input authorization tag tagIn = ciphertext.tag # The authorization tag computed during decryption tagOut: ChaChaPolyTag # Since ChaChaPoly's library "decrypt" primitive directly changes the input ciphertext to the plaintext, # we copy the ciphertext into the plaintext variable and we pass the latter to decrypt var plaintext = ciphertext.data # ChaChaPoly.decrypt takes as input: the key (k), the nonce (nonce), a data structure for storing the computed authorization tag (tag), # the ciphertext (overwritten to plaintext) (data), the associated data (ad) ChaChaPoly.decrypt(state.k, state.nonce, tagOut, plaintext, state.ad) #TODO: add unpadding trace "decrypt", tagIn = tagIn.shortLog, tagOut = tagOut.shortLog, nonce = state.nonce # We check if the authorization tag computed while decrypting is the same as the input tag if tagIn != tagOut: debug "decrypt failed", plaintext = shortLog(plaintext) raise newException(NoiseDecryptTagError, "decrypt tag authentication failed.") return plaintext # Generates a random ChaChaPoly Cipher State for testing encryption/decryption proc randomChaChaPolyCipherState*(rng: var BrHmacDrbgContext): ChaChaPolyCipherState = var randomCipherState: ChaChaPolyCipherState brHmacDrbgGenerate(rng, randomCipherState.k) brHmacDrbgGenerate(rng, randomCipherState.nonce) randomCipherState.ad = newSeq[byte](32) brHmacDrbgGenerate(rng, randomCipherState.ad) return randomCipherState ################################################################# # Noise Public keys # Checks equality between two Noise public keys proc `==`(k1, k2: NoisePublicKey): bool = return (k1.flag == k2.flag) and (k1.pk == k2.pk) # Converts a (public, private) Elliptic Curve keypair to an unencrypted Noise public key (only public part) proc keyPairToNoisePublicKey*(keyPair: KeyPair): NoisePublicKey = var noisePublicKey: NoisePublicKey noisePublicKey.flag = 0 noisePublicKey.pk = getBytes(keyPair.publicKey) return noisePublicKey # Generates a random Noise public key proc genNoisePublicKey*(rng: var BrHmacDrbgContext): NoisePublicKey = var noisePublicKey: NoisePublicKey # We generate a random key pair let keyPair: KeyPair = genKeyPair(rng) # Since it is unencrypted, flag is 0 noisePublicKey.flag = 0 # We copy the public X coordinate of the key pair to the output Noise public key noisePublicKey.pk = getBytes(keyPair.publicKey) return noisePublicKey # Converts a Noise public key to a stream of bytes as in # https://rfc.vac.dev/spec/35/#public-keys-serialization proc serializeNoisePublicKey*(noisePublicKey: NoisePublicKey): seq[byte] = var serializedNoisePublicKey: seq[byte] # Public key is serialized as (flag || pk) # Note that pk contains the X coordinate of the public key if unencrypted # or the encryption concatenated with the authorization tag if encrypted serializedNoisePublicKey.add noisePublicKey.flag serializedNoisePublicKey.add noisePublicKey.pk return serializedNoisePublicKey # Converts a serialized Noise public key to a NoisePublicKey object as in # https://rfc.vac.dev/spec/35/#public-keys-serialization proc intoNoisePublicKey*(serializedNoisePublicKey: seq[byte]): NoisePublicKey {.raises: [Defect, NoisePublicKeyError].} = var noisePublicKey: NoisePublicKey # We retrieve the encryption flag noisePublicKey.flag = serializedNoisePublicKey[0] # If not 0 or 1 we raise a new exception if not (noisePublicKey.flag == 0 or noisePublicKey.flag == 1): raise newException(NoisePublicKeyError, "Invalid flag in serialized public key") # We set the remaining sequence to the pk value (this may be an encrypted or not encrypted X coordinate) noisePublicKey.pk = serializedNoisePublicKey[1.. uint8.high.int: debug "PayloadV2 malformed: too many public keys contained in the handshake message" return err("Too many public keys in handshake message") # We get the transport message byte length let transportMessageLen = self.transportMessage.len # The output payload as in https://rfc.vac.dev/spec/35/. We concatenate all the PayloadV2 fields as # payload = ( protocolId || serializedHandshakeMessageLen || serializedHandshakeMessage || transportMessageLen || transportMessage) # We declare it as a byte sequence of length accordingly to the PayloadV2 information read var payload = newSeqOfCap[byte](1 + # 1 byte for protocol ID 1 + # 1 byte for length of serializedHandshakeMessage field serializedHandshakeMessageLen + # serializedHandshakeMessageLen bytes for serializedHandshakeMessage 8 + # 8 bytes for transportMessageLen transportMessageLen # transportMessageLen bytes for transportMessage ) # We concatenate all the data # The protocol ID (1 byte) and handshake message length (1 byte) can be directly casted to byte to allow direct copy to the payload byte sequence payload.add self.protocolId.byte payload.add serializedHandshakeMessageLen.byte payload.add serializedHandshakeMessage # The transport message length is converted from uint64 to bytes in Little-Endian payload.add toBytesLE(transportMessageLen.uint64) payload.add self.transportMessage return ok(payload) # Deserializes a byte sequence to a PayloadV2 object according to https://rfc.vac.dev/spec/35/. # The input serialized payload concatenates the output PayloadV2 object fields as # payload = ( protocolId || serializedHandshakeMessageLen || serializedHandshakeMessage || transportMessageLen || transportMessage) proc deserializePayloadV2*(payload: seq[byte]): Result[PayloadV2, cstring] {.raises: [Defect, NoisePublicKeyError].} = # The output PayloadV2 var payload2: PayloadV2 # i is the read input buffer position index var i: uint64 = 0 # We start reading the Protocol ID # TODO: when the list of supported protocol ID is defined, check if read protocol ID is supported payload2.protocolId = payload[i].uint8 i += 1 # We read the Handshake Message lenght (1 byte) var handshakeMessageLen = payload[i].uint64 if handshakeMessageLen > uint8.high.uint64: debug "Payload malformed: too many public keys contained in the handshake message" #raise newException(NoiseMalformedHandshake, "Too many public keys in handshake message") return err("Too many public keys in handshake message") i += 1 # We now read for handshakeMessageLen bytes the buffer and we deserialize each (encrypted/unencrypted) public key read var # In handshakeMessage we accumulate the read deserialized Noise Public keys handshakeMessage: seq[NoisePublicKey] flag: byte pkLen: uint64 written: uint64 = 0 # We read the buffer until handshakeMessageLen are read while written != handshakeMessageLen: # We obtain the current Noise Public key encryption flag flag = payload[i] # If the key is unencrypted, we only read the X coordinate of the EC public key and we deserialize into a Noise Public Key if flag == 0: pkLen = 1 + EllipticCurveKey.len handshake_message.add intoNoisePublicKey(payload[i..