{.push raises: [].} import chronicles, metrics, metrics/chronos_httpserver, ./constants, ../utils/collector export metrics logScope: topics = "waku rln_relay" func generateBucketsForHistogram*(length: int): seq[float64] = ## Generate a custom set of 5 buckets for a given length let numberOfBuckets = 5 let stepSize = length / numberOfBuckets var buckets: seq[float64] for i in 1 .. numberOfBuckets: buckets.add(stepSize * i.toFloat()) return buckets declarePublicCounter( waku_rln_messages_total, "number of messages published on the rln content topic" ) declarePublicCounter(waku_rln_spam_messages_total, "number of spam messages detected") declarePublicCounter( waku_rln_invalid_messages_total, "number of invalid messages detected", ["type"] ) # This metric will be useful in detecting the index of the root in the acceptable window of roots declarePublicHistogram( identifier = waku_rln_valid_messages_total, help = "number of valid messages with their roots tracked", buckets = generateBucketsForHistogram(AcceptableRootWindowSize), ) declarePublicCounter( waku_rln_errors_total, "number of errors detected while operating the rln relay", ["type"], ) declarePublicCounter( waku_rln_proof_verification_total, "number of times the rln proofs are verified" ) # this is a gauge so that we can set it based on the events we receive declarePublicGauge( waku_rln_number_registered_memberships, "number of registered and active rln memberships", ) # Timing metrics declarePublicGauge( waku_rln_proof_verification_duration_seconds, "time taken to verify a proof" ) declarePublicGauge( waku_rln_proof_generation_duration_seconds, "time taken to generate a proof" ) declarePublicGauge( waku_rln_instance_creation_duration_seconds, "time taken to create an rln instance" ) declarePublicGauge( waku_rln_membership_insertion_duration_seconds, "time taken to insert a new member into the local merkle tree", ) declarePublicGauge( waku_rln_membership_credentials_import_duration_seconds, "time taken to import membership credentials", ) type RLNMetricsLogger = proc() {.gcsafe, raises: [Defect].} proc getRlnMetricsLogger*(): RLNMetricsLogger = var logMetrics: RLNMetricsLogger var cumulativeErrors = 0.float64 var cumulativeMessages = 0.float64 var cumulativeSpamMessages = 0.float64 var cumulativeInvalidMessages = 0.float64 var cumulativeValidMessages = 0.float64 var cumulativeProofs = 0.float64 when defined(metrics): logMetrics = proc() = {.gcsafe.}: let freshErrorCount = parseAndAccumulate(waku_rln_errors_total, cumulativeErrors) let freshMsgCount = parseAndAccumulate(waku_rln_messages_total, cumulativeMessages) let freshSpamCount = parseAndAccumulate(waku_rln_spam_messages_total, cumulativeSpamMessages) let freshInvalidMsgCount = parseAndAccumulate(waku_rln_invalid_messages_total, cumulativeInvalidMessages) let freshValidMsgCount = parseAndAccumulate(waku_rln_valid_messages_total, cumulativeValidMessages) let freshProofCount = parseAndAccumulate(waku_rln_proof_verification_total, cumulativeProofs) info "Total messages", count = freshMsgCount info "Total spam messages", count = freshSpamCount info "Total invalid messages", count = freshInvalidMsgCount info "Total valid messages", count = freshValidMsgCount info "Total errors", count = freshErrorCount info "Total proofs verified", count = freshProofCount return logMetrics