Rln-relay zkp module Nim bindings (#427)

* entirely replaces the prior rln header, the var variables are changed to ptr

* updates the unittest of key_gen

* adds test for update_next_member

* updates membershipKeyGen internals and prototype

* adds createRLNInstance

* adds helpers methods

* adds generateKeyPairBuffer

* cleans up the test and adds comments

* renames  merkleTreeDepth to d

* fixes a buf re decoding the keys into sk and pk

* adds getSKPK proc

* unifies key gen helper procs, adds todos

* comments out the createRLNInstance

* refactors the code based on the updated createRLNInstance interface

* adds the test for the verify proc

* fixes a variable name and replaces random key gen with the real key gen

* tests a simple hash

* adds get_root method

* fixes the data pointer issue and adds the proof breakdown

* adds rln

* adds unit tests for Merkle tree

* adds a sample hash test

* fixes the hash bug and comments out unused part of proof gen test

* cleans up the proof gent test

* replaces unsafeAddr with addr

* fixes an issue in key gen

* updates rln submodule

* fixes the verification problem

* adds a failed test

* replaces an old test scenario with a new one

* handles createRLNInstance output

* working createRLNInstance2

* refactors the code by replacing the old createRLNInstance

* renames createRLNInstance2

* adds documentation and reorganizes rln.nim

* replace echo with debug, renames vars, adds a bad proof test

* minor

* minor

* edits var names

* adds one more check

* adds one more test to the hash

* enforcing exception handling

* adds pacman -Sy

* removes update:true

* activates update
This commit is contained in:
Sanaz Taheri Boshrooyeh 2021-03-31 17:39:27 -07:00 committed by GitHub
parent 27844c9a20
commit e7c21c2f74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 200 additions and 37 deletions

View File

@ -181,11 +181,10 @@ procSuite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# generate the membership keys # generate the membership keys
let membershipKeyPair = membershipKeyGen(ctxPtrPtr[]) let membershipKeyPair = membershipKeyGen(ctxPtr)
check: check:
membershipKeyPair.isSome membershipKeyPair.isSome
@ -273,10 +272,9 @@ suite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
var key = membershipKeyGen(ctxPtrPtr[]) var key = membershipKeyGen(ctxPtr)
var empty : array[32,byte] var empty : array[32,byte]
check: check:
key.isSome key.isSome
@ -292,14 +290,13 @@ suite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# read the Merkle Tree root # read the Merkle Tree root
var var
root1 {.noinit.} : Buffer = Buffer() root1 {.noinit.} : Buffer = Buffer()
rootPtr1 = addr(root1) rootPtr1 = addr(root1)
get_root_successful1 = get_root(ctxPtrPtr[], rootPtr1) get_root_successful1 = get_root(ctxPtr, rootPtr1)
doAssert(get_root_successful1) doAssert(get_root_successful1)
doAssert(root1.len == 32) doAssert(root1.len == 32)
@ -307,7 +304,7 @@ suite "Waku rln relay":
var var
root2 {.noinit.} : Buffer = Buffer() root2 {.noinit.} : Buffer = Buffer()
rootPtr2 = addr(root2) rootPtr2 = addr(root2)
get_root_successful2 = get_root(ctxPtrPtr[], rootPtr2) get_root_successful2 = get_root(ctxPtr, rootPtr2)
doAssert(get_root_successful2) doAssert(get_root_successful2)
doAssert(root2.len == 32) doAssert(root2.len == 32)
@ -325,17 +322,16 @@ suite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# generate a key pair # generate a key pair
var keypair = membershipKeyGen(ctxPtrPtr[]) var keypair = membershipKeyGen(ctxPtr)
doAssert(keypair.isSome()) doAssert(keypair.isSome())
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32) var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
let pkBufferPtr = addr pkBuffer let pkBufferPtr = addr pkBuffer
# add the member to the tree # add the member to the tree
var member_is_added = update_next_member(ctxPtrPtr[], pkBufferPtr) var member_is_added = update_next_member(ctxPtr, pkBufferPtr)
check: check:
member_is_added == true member_is_added == true
@ -344,12 +340,11 @@ suite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# delete the first member # delete the first member
var deleted_member_index = uint(0) var deleted_member_index = uint(0)
let deletion_success = delete_member(ctxPtrPtr[], deleted_member_index) let deletion_success = delete_member(ctxPtr, deleted_member_index)
doAssert(deletion_success) doAssert(deletion_success)
test "Merkle tree consistency check between deletion and insertion": test "Merkle tree consistency check between deletion and insertion":
@ -357,45 +352,44 @@ suite "Waku rln relay":
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# read the Merkle Tree root # read the Merkle Tree root
var var
root1 {.noinit.} : Buffer = Buffer() root1 {.noinit.} : Buffer = Buffer()
rootPtr1 = addr(root1) rootPtr1 = addr(root1)
get_root_successful1 = get_root(ctxPtrPtr[], rootPtr1) get_root_successful1 = get_root(ctxPtr, rootPtr1)
doAssert(get_root_successful1) doAssert(get_root_successful1)
doAssert(root1.len == 32) doAssert(root1.len == 32)
# generate a key pair # generate a key pair
var keypair = membershipKeyGen(ctxPtrPtr[]) var keypair = membershipKeyGen(ctxPtr)
doAssert(keypair.isSome()) doAssert(keypair.isSome())
var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32) var pkBuffer = Buffer(`ptr`: addr(keypair.get().publicKey[0]), len: 32)
let pkBufferPtr = addr pkBuffer let pkBufferPtr = addr pkBuffer
# add the member to the tree # add the member to the tree
var member_is_added = update_next_member(ctxPtrPtr[], pkBufferPtr) var member_is_added = update_next_member(ctxPtr, pkBufferPtr)
doAssert(member_is_added) doAssert(member_is_added)
# read the Merkle Tree root after insertion # read the Merkle Tree root after insertion
var var
root2 {.noinit.} : Buffer = Buffer() root2 {.noinit.} : Buffer = Buffer()
rootPtr2 = addr(root2) rootPtr2 = addr(root2)
get_root_successful2 = get_root(ctxPtrPtr[], rootPtr2) get_root_successful2 = get_root(ctxPtr, rootPtr2)
doAssert(get_root_successful2) doAssert(get_root_successful2)
doAssert(root2.len == 32) doAssert(root2.len == 32)
# delete the first member # delete the first member
var deleted_member_index = uint(0) var deleted_member_index = uint(0)
let deletion_success = delete_member(ctxPtrPtr[], deleted_member_index) let deletion_success = delete_member(ctxPtr, deleted_member_index)
doAssert(deletion_success) doAssert(deletion_success)
# read the Merkle Tree root after the deletion # read the Merkle Tree root after the deletion
var var
root3 {.noinit.} : Buffer = Buffer() root3 {.noinit.} : Buffer = Buffer()
rootPtr3 = addr(root3) rootPtr3 = addr(root3)
get_root_successful3 = get_root(ctxPtrPtr[], rootPtr3) get_root_successful3 = get_root(ctxPtr, rootPtr3)
doAssert(get_root_successful3) doAssert(get_root_successful3)
doAssert(root3.len == 32) doAssert(root3.len == 32)
@ -417,3 +411,150 @@ suite "Waku rln relay":
## The initial root of the tree (empty tree) must be identical to ## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion ## the root of the tree after one insertion followed by a deletion
doAssert(rootHex1 == rootHex3) doAssert(rootHex1 == rootHex3)
test "hash Nim Wrappers":
# create an RLN instance
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
doAssert(createRLNInstance(30, ctxPtr))
# prepare the input
var
hashInput : array[32, byte]
for x in hashInput.mitems: x= 1
var
hashInputHex = hashInput.toHex()
hashInputBuffer = Buffer(`ptr`: addr hashInput[0], len: 32 )
debug "sample_hash_input_bytes", hashInputHex
# prepare other inputs to the hash function
var
outputBuffer: Buffer
numOfInputs = 1.uint # the number of hash inputs that can be 1 or 2
let hashSuccess = hash(ctxPtr, addr hashInputBuffer, numOfInputs, addr outputBuffer)
doAssert(hashSuccess)
let outputArr = cast[ptr array[32,byte]](outputBuffer.`ptr`)[]
doAssert("53a6338cdbf02f0563cec1898e354d0d272c8f98b606c538945c6f41ef101828" == outputArr.toHex())
var
hashOutput = cast[ptr array[32,byte]] (outputBuffer.`ptr`)[]
hashOutputHex = hashOutput.toHex()
debug "hash output", hashOutputHex
test "generate_proof and verify Nim Wrappers":
# create an RLN instance
var
ctx = RLN[Bn256]()
ctxPtr = addr(ctx)
# check if the rln instance is created successfully
doAssert(createRLNInstance(32, ctxPtr))
# create the membership key
var auth = membershipKeyGen(ctxPtr)
var skBuffer = Buffer(`ptr`: addr(auth.get().secretKey[0]), len: 32)
# peer's index in the Merkle Tree
var index = 5
# prepare the authentication object with peer's index and sk
var authObj: Auth = Auth(secret_buffer: addr skBuffer, index: uint(index))
# Create a Merkle tree with random members
for i in 0..10:
var member_is_added: bool = false
if (i == index):
# insert the current peer's pk
var pkBuffer = Buffer(`ptr`: addr(auth.get().publicKey[0]), len: 32)
member_is_added = update_next_member(ctxPtr, addr pkBuffer)
else:
var memberKeys = membershipKeyGen(ctxPtr)
var pkBuffer = Buffer(`ptr`: addr(memberKeys.get().publicKey[0]), len: 32)
member_is_added = update_next_member(ctxPtr, addr pkBuffer)
# check the member is added
doAssert(member_is_added)
# prepare the message
var messageBytes {.noinit.}: array[32, byte]
for x in messageBytes.mitems: x = 1
var messageHex = messageBytes.toHex()
debug "message", messageHex
# prepare the epoch
var epochBytes : array[32,byte]
for x in epochBytes.mitems : x = 0
var epochHex = epochBytes.toHex()
debug "epoch in bytes", epochHex
# serialize message and epoch
# TODO add a proc for serializing
var epochMessage = @epochBytes & @messageBytes
doAssert(epochMessage.len == 64)
var inputBytes{.noinit.}: array[64, byte] # holds epoch||Message
for (i, x) in inputBytes.mpairs: x = epochMessage[i]
var inputHex = inputBytes.toHex()
debug "serialized epoch and message ", inputHex
# put the serialized epoch||message into a buffer
var inputBuffer = Buffer(`ptr`: addr(inputBytes[0]), len: 64)
# generate the proof
var proof: Buffer
let proofIsSuccessful = generate_proof(ctxPtr, addr inputBuffer, addr authObj, addr proof)
# check whether the generate_proof call is done successfully
doAssert(proofIsSuccessful)
var proofValue = cast[ptr array[416,byte]] (proof.`ptr`)
let proofHex = proofValue[].toHex
debug "proof content", proofHex
# display the proof breakdown
var
zkSNARK = proofHex[0..511]
proofRoot = proofHex[512..575]
proofEpoch = proofHex[576..639]
shareX = proofHex[640..703]
shareY = proofHex[704..767]
nullifier = proofHex[768..831]
doAssert(zkSNARK.len == 512)
doAssert(proofRoot.len == 64)
doAssert(proofEpoch.len == 64)
doAssert(epochHex == proofEpoch)
doAssert(shareX.len == 64)
doAssert(shareY.len == 64)
doAssert(nullifier.len == 64)
debug "zkSNARK ", zkSNARK
debug "root ", proofRoot
debug "epoch ", proofEpoch
debug "shareX", shareX
debug "shareY", shareY
debug "nullifier", nullifier
var f = 0.uint32
let verifyIsSuccessful = verify(ctxPtr, addr proof, addr f)
doAssert(verifyIsSuccessful)
# f = 0 means the proof is verified
doAssert(f == 0)
# create and test a bad proof
# prepare a bad authentication object with a wrong peer's index
var badIndex = 8
var badAuthObj: Auth = Auth(secret_buffer: addr skBuffer, index: uint(badIndex))
var badProof: Buffer
let badProofIsSuccessful = generate_proof(ctxPtr, addr inputBuffer, addr badAuthObj, addr badProof)
# check whether the generate_proof call is done successfully
doAssert(badProofIsSuccessful)
var badF = 0.uint32
let badVerifyIsSuccessful = verify(ctxPtr, addr badProof, addr badF)
doAssert(badVerifyIsSuccessful)
# badF=1 means the proof is not verified
# verification of the bad proof should fail
doAssert(badF == 1)

View File

@ -339,11 +339,10 @@ proc mountRlnRelay*(node: WakuNode, ethClientAddress: Option[string] = none(stri
var var
ctx = RLN[Bn256]() ctx = RLN[Bn256]()
ctxPtr = addr(ctx) ctxPtr = addr(ctx)
ctxPtrPtr = addr(ctxPtr) doAssert(createRLNInstance(32, ctxPtr))
doAssert(createRLNInstance(32, ctxPtrPtr))
# generate the membership keys # generate the membership keys
let membershipKeyPair = membershipKeyGen(ctxPtrPtr[]) let membershipKeyPair = membershipKeyGen(ctxPtr)
# check whether keys are generated # check whether keys are generated
doAssert(membershipKeyPair.isSome()) doAssert(membershipKeyPair.isSome())
debug "the membership key for the rln relay is generated" debug "the membership key for the rln relay is generated"

View File

@ -12,7 +12,7 @@ elif defined(MacOsX):
const libName* = libPath / "librln.dylib" const libName* = libPath / "librln.dylib"
# all the following procedures are Nim wrappers for the functions defined in libName # all the following procedures are Nim wrappers for the functions defined in libName
{.push dynlib: libName.} {.push dynlib: libName, raises: [Defect].}
type RLN*[E] {.incompleteStruct.} = object type RLN*[E] {.incompleteStruct.} = object
type Bn256* = pointer type Bn256* = pointer
@ -23,13 +23,12 @@ type Buffer* = object
`ptr`*: ptr uint8 `ptr`*: ptr uint8
len*: uint len*: uint
proc key_gen*(ctx: ptr RLN[Bn256], keypair_buffer: ptr Buffer): bool {.importc: "key_gen".} type Auth* = object
secret_buffer*: ptr Buffer
index*: uint
proc new_circuit_from_params*(merkle_depth: uint, #------------------------------ Merkle Tree operations -----------------------------------------
parameters_buffer: ptr Buffer,
ctx: ptr (ptr RLN[Bn256])): bool {.importc: "new_circuit_from_params".}
#------------------------------Merkle Tree operations -----------------------------------------
proc update_next_member*(ctx: ptr RLN[Bn256], proc update_next_member*(ctx: ptr RLN[Bn256],
input_buffer: ptr Buffer): bool {.importc: "update_next_member".} input_buffer: ptr Buffer): bool {.importc: "update_next_member".}
@ -37,5 +36,27 @@ proc delete_member*(ctx: ptr RLN[Bn256], index: uint): bool {.importc: "delete_m
proc get_root*(ctx: ptr RLN[Bn256], output_buffer: ptr Buffer): bool {.importc: "get_root".} proc get_root*(ctx: ptr RLN[Bn256], output_buffer: ptr Buffer): bool {.importc: "get_root".}
#---------------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------------
#-------------------------------- zkSNARKs operations -----------------------------------------
proc key_gen*(ctx: ptr RLN[Bn256], keypair_buffer: ptr Buffer): bool {.importc: "key_gen".}
proc generate_proof*(ctx: ptr RLN[Bn256],
input_buffer: ptr Buffer,
auth: ptr Auth,
output_buffer: ptr Buffer): bool {.importc: "generate_proof".}
proc verify*(ctx: ptr RLN[Bn256],
proof_buffer: ptr Buffer,
result_ptr: ptr uint32): bool {.importc: "verify".}
#----------------------------------------------------------------------------------------------
#-------------------------------- Common procedures -------------------------------------------
proc new_circuit_from_params*(merkle_depth: uint,
parameters_buffer: ptr Buffer,
ctx: ptr (ptr RLN[Bn256])): bool {.importc: "new_circuit_from_params".}
proc hash*(ctx: ptr RLN[Bn256],
inputs_buffer: ptr Buffer,
input_len: uint,
output_buffer: ptr Buffer): bool {.importc: "hash".}
{.pop.} {.pop.}

View File

@ -31,11 +31,12 @@ contract(MembershipContract):
# TODO define a return type of bool for register method to signify a successful registration # TODO define a return type of bool for register method to signify a successful registration
proc register(pubkey: Uint256) # external payable proc register(pubkey: Uint256) # external payable
proc createRLNInstance*(d: int, ctxPtrPtr: ptr (ptr RLN[Bn256])): bool = proc createRLNInstance*(d: int, ctxPtr: var ptr RLN[Bn256]): bool =
## generates an instance of RLN ## generates an instance of RLN
## An RLN instance supports both zkSNARKs logics and Merkle tree data structure and operations ## An RLN instance supports both zkSNARKs logics and Merkle tree data structure and operations
## d indicates the depth of Merkle tree ## d indicates the depth of Merkle tree
var var
ctxPtrPtr = addr(ctxPtr)
merkleDepth: csize_t = uint(d) merkleDepth: csize_t = uint(d)
# parameters.key contains the parameters related to the Poseidon hasher # parameters.key contains the parameters related to the Poseidon hasher
# to generate this file, clone this repo https://github.com/kilic/rln # to generate this file, clone this repo https://github.com/kilic/rln
@ -90,6 +91,7 @@ proc membershipKeyGen*(ctxPtr: ptr RLN[Bn256]): Option[MembershipKeyPair] =
var var
keypair = MembershipKeyPair(secretKey: secret, publicKey: public) keypair = MembershipKeyPair(secretKey: secret, publicKey: public)
return some(keypair) return some(keypair)
proc register*(rlnPeer: WakuRLNRelay): Future[bool] {.async.} = proc register*(rlnPeer: WakuRLNRelay): Future[bool] {.async.} =