mirror of
https://github.com/waku-org/nwaku.git
synced 2025-01-13 16:25:00 +00:00
deploy: 710ce1315a71d0deb7d23948664d5a02c7ac1860
This commit is contained in:
parent
65a7d29b19
commit
e272af30d4
@ -3,11 +3,15 @@
|
||||
import
|
||||
testutils/unittests,
|
||||
std/random,
|
||||
std/tables,
|
||||
stew/byteutils,
|
||||
../../waku/v2/node/waku_payload,
|
||||
../../waku/v2/protocol/waku_noise/noise,
|
||||
../../waku/v2/protocol/waku_message,
|
||||
../test_helpers
|
||||
../test_helpers,
|
||||
libp2p/crypto/chacha20poly1305,
|
||||
stew/endians2
|
||||
|
||||
|
||||
procSuite "Waku Noise":
|
||||
|
||||
@ -157,4 +161,255 @@ procSuite "Waku Noise":
|
||||
|
||||
check:
|
||||
decoded.isOk()
|
||||
payload2 == decoded.get()
|
||||
payload2 == decoded.get()
|
||||
|
||||
test "Noise State Machine: Diffie-Hellman operation":
|
||||
|
||||
#We generate random keypairs
|
||||
let
|
||||
aliceKey = genKeyPair(rng[])
|
||||
bobKey = genKeyPair(rng[])
|
||||
|
||||
# A Diffie-Hellman operation between Alice's private key and Bob's public key must be equal to
|
||||
# a Diffie-hellman operation between Alice's public key and Bob's private key
|
||||
let
|
||||
dh1 = dh(getPrivateKey(aliceKey), getPublicKey(bobKey))
|
||||
dh2 = dh(getPrivateKey(bobKey), getPublicKey(aliceKey))
|
||||
|
||||
check:
|
||||
dh1 == dh2
|
||||
|
||||
test "Noise State Machine: Cipher State primitives":
|
||||
|
||||
# We generate a random Cipher State, associated data ad and plaintext
|
||||
var
|
||||
cipherState: CipherState = randomCipherState(rng[])
|
||||
nonce: uint64 = uint64(rand(0 .. int.high))
|
||||
ad: seq[byte] = randomSeqByte(rng[], rand(1..128))
|
||||
plaintext: seq[byte] = randomSeqByte(rng[], rand(1..128))
|
||||
|
||||
# We set the random nonce generated in the cipher state
|
||||
setNonce(cipherState, nonce)
|
||||
|
||||
# We perform encryption
|
||||
var ciphertext: seq[byte] = encryptWithAd(cipherState, ad, plaintext)
|
||||
|
||||
# After any encryption/decryption operation, the Cipher State's nonce increases by 1
|
||||
check:
|
||||
getNonce(cipherState) == nonce + 1
|
||||
|
||||
# We set the nonce back to its original value for decryption
|
||||
setNonce(cipherState, nonce)
|
||||
|
||||
# We decrypt (using the original nonce)
|
||||
var decrypted: seq[byte] = decryptWithAd(cipherState, ad, ciphertext)
|
||||
|
||||
# We check if encryption and decryption are correct and that nonce correctly increased after decryption
|
||||
check:
|
||||
getNonce(cipherState) == nonce + 1
|
||||
plaintext == decrypted
|
||||
|
||||
|
||||
# If a Cipher State has no key set, encryptWithAd should return the plaintext without increasing the nonce
|
||||
setCipherStateKey(cipherState, EmptyKey)
|
||||
nonce = getNonce(cipherState)
|
||||
|
||||
plaintext = randomSeqByte(rng[], rand(1..128))
|
||||
ciphertext = encryptWithAd(cipherState, ad, plaintext)
|
||||
|
||||
check:
|
||||
ciphertext == plaintext
|
||||
getNonce(cipherState) == nonce
|
||||
|
||||
# If a Cipher State has no key set, decryptWithAd should return the ciphertext without increasing the nonce
|
||||
setCipherStateKey(cipherState, EmptyKey)
|
||||
nonce = getNonce(cipherState)
|
||||
|
||||
# Note that we set ciphertext minimum length to 16 to not trigger checks on authentication tag length
|
||||
ciphertext = randomSeqByte(rng[], rand(16..128))
|
||||
plaintext = decryptWithAd(cipherState, ad, ciphertext)
|
||||
|
||||
check:
|
||||
ciphertext == plaintext
|
||||
getNonce(cipherState) == nonce
|
||||
|
||||
# A Cipher State cannot have a nonce greater or equal 2^64-1
|
||||
# Note that NonceMax is uint64.high - 1 = 2^64-1-1 and that nonce is increased after each encryption and decryption operation
|
||||
|
||||
# We generate a test Cipher State with nonce set to MaxNonce
|
||||
cipherState = randomCipherState(rng[])
|
||||
setNonce(cipherState, NonceMax)
|
||||
plaintext = randomSeqByte(rng[], rand(1..128))
|
||||
|
||||
# We test if encryption fails with a NoiseNonceMaxError error. Any subsequent encryption call over the Cipher State should fail similarly and leave the nonce unchanged
|
||||
for _ in [1..5]:
|
||||
expect NoiseNonceMaxError:
|
||||
ciphertext = encryptWithAd(cipherState, ad, plaintext)
|
||||
|
||||
check:
|
||||
getNonce(cipherState) == NonceMax + 1
|
||||
|
||||
# We generate a test Cipher State
|
||||
# Since nonce is increased after decryption as well, we need to generate a proper ciphertext in order to test MaxNonceError error handling
|
||||
# We cannot call encryptWithAd to encrypt a plaintext using a nonce equal MaxNonce, since this will trigger a MaxNonceError.
|
||||
# To perform such test, we then need to encrypt a test plaintext using directly ChaChaPoly primitive
|
||||
cipherState = randomCipherState(rng[])
|
||||
setNonce(cipherState, NonceMax)
|
||||
plaintext = randomSeqByte(rng[], rand(1..128))
|
||||
|
||||
# We perform encryption using the Cipher State key, NonceMax and ad
|
||||
# By Noise specification the nonce is 8 bytes long out of the 12 bytes supported by ChaChaPoly, thus we copy the Little endian conversion of the nonce to a ChaChaPolyNonce
|
||||
var
|
||||
encNonce: ChaChaPolyNonce
|
||||
authorizationTag: ChaChaPolyTag
|
||||
encNonce[4..<12] = toBytesLE(NonceMax)
|
||||
ChaChaPoly.encrypt(getKey(cipherState), encNonce, authorizationTag, plaintext, ad)
|
||||
|
||||
# The output ciphertext is stored in the plaintext variable after ChaChaPoly.encrypt is called: we copy it along with the authorization tag.
|
||||
ciphertext = @[]
|
||||
ciphertext.add(plaintext)
|
||||
ciphertext.add(authorizationTag)
|
||||
|
||||
# At this point ciphertext is a proper encryption of the original plaintext obtained with nonce equal to NonceMax
|
||||
# We can now test if decryption fails with a NoiseNonceMaxError error. Any subsequent decryption call over the Cipher State should fail similarly and leave the nonce unchanged
|
||||
# Note that decryptWithAd doesn't fail in decrypting the ciphertext (otherwise a NoiseDecryptTagError would have been triggered)
|
||||
for _ in [1..5]:
|
||||
expect NoiseNonceMaxError:
|
||||
plaintext = decryptWithAd(cipherState, ad, ciphertext)
|
||||
|
||||
check:
|
||||
getNonce(cipherState) == NonceMax + 1
|
||||
|
||||
test "Noise State Machine: Symmetric State primitives":
|
||||
|
||||
# We select one supported handshake pattern and we initialize a symmetric state
|
||||
var
|
||||
hsPattern = NoiseHandshakePatterns["XX"]
|
||||
symmetricState: SymmetricState = SymmetricState.init(hsPattern)
|
||||
|
||||
# We get all the Symmetric State field
|
||||
# cs : Cipher State
|
||||
# ck : chaining key
|
||||
# h : handshake hash
|
||||
var
|
||||
cs = getCipherState(symmetricState)
|
||||
ck = getChainingKey(symmetricState)
|
||||
h = getHandshakeHash(symmetricState)
|
||||
|
||||
# When a Symmetric state is initialized, handshake hash and chaining key are (byte-wise) equal
|
||||
check:
|
||||
h.data.intoChaChaPolyKey == ck
|
||||
|
||||
########################################
|
||||
# mixHash
|
||||
########################################
|
||||
|
||||
# We generate a random byte sequence and execute a mixHash over it
|
||||
mixHash(symmetricState, randomSeqByte(rng[], rand(1..128)))
|
||||
|
||||
# mixHash changes only the handshake hash value of the Symmetric state
|
||||
check:
|
||||
cs == getCipherState(symmetricState)
|
||||
ck == getChainingKey(symmetricState)
|
||||
h != getHandshakeHash(symmetricState)
|
||||
|
||||
# We update test values
|
||||
h = getHandshakeHash(symmetricState)
|
||||
|
||||
########################################
|
||||
# mixKey
|
||||
########################################
|
||||
|
||||
# We generate random input key material and we execute mixKey
|
||||
var inputKeyMaterial = randomChaChaPolyKey(rng[])
|
||||
mixKey(symmetricState, inputKeyMaterial)
|
||||
|
||||
# mixKey changes the Symmetric State's chaining key and encryption key of the embedded Cipher State
|
||||
# It further sets to 0 the nonce of the embedded Cipher State
|
||||
check:
|
||||
getKey(cs) != getKey(getCipherState(symmetricState))
|
||||
getNonce(getCipherState(symmetricState)) == 0.uint64
|
||||
cs != getCipherState(symmetricState)
|
||||
ck != getChainingKey(symmetricState)
|
||||
h == getHandshakeHash(symmetricState)
|
||||
|
||||
# We update test values
|
||||
cs = getCipherState(symmetricState)
|
||||
ck = getChainingKey(symmetricState)
|
||||
|
||||
########################################
|
||||
# mixKeyAndHash
|
||||
########################################
|
||||
|
||||
# We generate random input key material and we execute mixKeyAndHash
|
||||
inputKeyMaterial = randomChaChaPolyKey(rng[])
|
||||
mixKeyAndHash(symmetricState, inputKeyMaterial)
|
||||
|
||||
# mixKeyAndHash executes a mixKey and a mixHash using the input key material
|
||||
# All Symmetric State's fields are updated
|
||||
check:
|
||||
cs != getCipherState(symmetricState)
|
||||
ck != getChainingKey(symmetricState)
|
||||
h != getHandshakeHash(symmetricState)
|
||||
|
||||
# We update test values
|
||||
cs = getCipherState(symmetricState)
|
||||
ck = getChainingKey(symmetricState)
|
||||
h = getHandshakeHash(symmetricState)
|
||||
|
||||
########################################
|
||||
# encryptAndHash and decryptAndHash
|
||||
########################################
|
||||
|
||||
# We store the initial symmetricState in order to correctly perform decryption
|
||||
var initialSymmetricState = symmetricState
|
||||
|
||||
# We generate random plaintext and we execute encryptAndHash
|
||||
var plaintext = randomChaChaPolyKey(rng[])
|
||||
var nonce = getNonce(getCipherState(symmetricState))
|
||||
var ciphertext = encryptAndHash(symmetricState, plaintext)
|
||||
|
||||
# encryptAndHash combines encryptWithAd and mixHash over the ciphertext (encryption increases the nonce of the embedded Cipher State but does not change its key)
|
||||
# We check if only the handshake hash value and the Symmetric State changed accordingly
|
||||
check:
|
||||
cs != getCipherState(symmetricState)
|
||||
getKey(cs) == getKey(getCipherState(symmetricState))
|
||||
getNonce(getCipherState(symmetricState)) == nonce + 1
|
||||
ck == getChainingKey(symmetricState)
|
||||
h != getHandshakeHash(symmetricState)
|
||||
|
||||
# We restore the symmetric State to its initial value to test decryption
|
||||
symmetricState = initialSymmetricState
|
||||
|
||||
# We execute decryptAndHash over the ciphertext
|
||||
var decrypted = decryptAndHash(symmetricState, ciphertext)
|
||||
|
||||
# decryptAndHash combines decryptWithAd and mixHash over the ciphertext (encryption increases the nonce of the embedded Cipher State but does not change its key)
|
||||
# We check if only the handshake hash value and the Symmetric State changed accordingly
|
||||
# We further check if decryption corresponds to the original plaintext
|
||||
check:
|
||||
cs != getCipherState(symmetricState)
|
||||
getKey(cs) == getKey(getCipherState(symmetricState))
|
||||
getNonce(getCipherState(symmetricState)) == nonce + 1
|
||||
ck == getChainingKey(symmetricState)
|
||||
h != getHandshakeHash(symmetricState)
|
||||
decrypted == plaintext
|
||||
|
||||
########################################
|
||||
# split
|
||||
########################################
|
||||
|
||||
# If at least one mixKey is executed (as above), ck is non-empty
|
||||
check:
|
||||
getChainingKey(symmetricState) != EmptyKey
|
||||
|
||||
# When a Symmetric State's ck is non-empty, we can execute split, which creates two distinct Cipher States cs1 and cs2
|
||||
# with non-empty encryption keys and nonce set to 0
|
||||
var (cs1, cs2) = split(symmetricState)
|
||||
|
||||
check:
|
||||
getKey(cs1) != EmptyKey
|
||||
getKey(cs2) != EmptyKey
|
||||
getNonce(cs1) == 0.uint64
|
||||
getNonce(cs2) == 0.uint64
|
||||
getKey(cs1) != getKey(cs2)
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# libtool - Provide generalized library-building support services.
|
||||
# Generated automatically by config.status (libbacktrace) version-unused
|
||||
# Libtool was configured on host fv-az275-329:
|
||||
# Libtool was configured on host fv-az191-65:
|
||||
# NOTE: Changes made to this file will be lost: look at ltmain.sh.
|
||||
#
|
||||
# Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005,
|
||||
|
@ -7,16 +7,17 @@
|
||||
|
||||
{.push raises: [Defect].}
|
||||
|
||||
import std/[options, tables, strutils]
|
||||
import std/[oids, options, strutils, tables]
|
||||
import chronos
|
||||
import chronicles
|
||||
import bearssl
|
||||
import stew/[results, endians2]
|
||||
import stew/[results, endians2, byteutils]
|
||||
import nimcrypto/[utils, sha2, hmac]
|
||||
|
||||
import libp2p/utility
|
||||
import libp2p/errors
|
||||
import libp2p/crypto/[crypto, chacha20poly1305, curve25519]
|
||||
import libp2p/crypto/[crypto, chacha20poly1305, curve25519, hkdf]
|
||||
import libp2p/protocols/secure/secure
|
||||
|
||||
|
||||
logScope:
|
||||
@ -28,13 +29,19 @@ logScope:
|
||||
|
||||
const
|
||||
# EmptyKey represents a non-initialized ChaChaPolyKey
|
||||
EmptyKey = default(ChaChaPolyKey)
|
||||
EmptyKey* = default(ChaChaPolyKey)
|
||||
# The maximum ChaChaPoly allowed nonce in Noise Handshakes
|
||||
NonceMax = uint64.high - 1
|
||||
NonceMax* = uint64.high - 1
|
||||
|
||||
type
|
||||
|
||||
#################################
|
||||
# Elliptic Curve arithemtic
|
||||
#################################
|
||||
|
||||
# Default underlying elliptic curve arithmetic (useful for switching to multiple ECs)
|
||||
# Current default is Curve25519
|
||||
EllipticCurve = Curve25519
|
||||
EllipticCurveKey = Curve25519Key
|
||||
|
||||
# An EllipticCurveKey (public, private) key pair
|
||||
@ -42,6 +49,10 @@ type
|
||||
privateKey: EllipticCurveKey
|
||||
publicKey: EllipticCurveKey
|
||||
|
||||
#################################
|
||||
# Noise Public Keys
|
||||
#################################
|
||||
|
||||
# A Noise public key is a public key exchanged during Noise handshakes (no private part)
|
||||
# This follows https://rfc.vac.dev/spec/35/#public-keys-serialization
|
||||
# pk contains the X coordinate of the public key, if unencrypted (this implies flag = 0)
|
||||
@ -51,6 +62,10 @@ type
|
||||
flag: uint8
|
||||
pk: seq[byte]
|
||||
|
||||
#################################
|
||||
# ChaChaPoly Encryption
|
||||
#################################
|
||||
|
||||
# A ChaChaPoly ciphertext (data) + authorization tag (tag)
|
||||
ChaChaPolyCiphertext* = object
|
||||
data*: seq[byte]
|
||||
@ -62,6 +77,96 @@ type
|
||||
nonce: ChaChaPolyNonce
|
||||
ad: seq[byte]
|
||||
|
||||
#################################
|
||||
# Noise handshake patterns
|
||||
#################################
|
||||
|
||||
# The Noise tokens appearing in Noise (pre)message patterns
|
||||
# as in http://www.noiseprotocol.org/noise.html#handshake-pattern-basics
|
||||
NoiseTokens = enum
|
||||
T_e = "e"
|
||||
T_s = "s"
|
||||
T_es = "es"
|
||||
T_ee = "ee"
|
||||
T_se = "se"
|
||||
T_ss = "se"
|
||||
T_psk = "psk"
|
||||
|
||||
# The direction of a (pre)message pattern in canonical form (i.e. Alice-initiated form)
|
||||
# as in http://www.noiseprotocol.org/noise.html#alice-and-bob
|
||||
MessageDirection* = enum
|
||||
D_r = "->"
|
||||
D_l = "<-"
|
||||
|
||||
# The pre message pattern consisting of a message direction and some Noise tokens, if any.
|
||||
# (if non empty, only tokens e and s are allowed: http://www.noiseprotocol.org/noise.html#handshake-pattern-basics)
|
||||
PreMessagePattern* = object
|
||||
direction: MessageDirection
|
||||
tokens: seq[NoiseTokens]
|
||||
|
||||
# The message pattern consisting of a message direction and some Noise tokens
|
||||
# All Noise tokens are allowed
|
||||
MessagePattern* = object
|
||||
direction: MessageDirection
|
||||
tokens: seq[NoiseTokens]
|
||||
|
||||
# The handshake pattern object. It stores the handshake protocol name, the handshake pre message patterns and the handshake message patterns
|
||||
HandshakePattern* = object
|
||||
name*: string
|
||||
preMessagePatterns*: seq[PreMessagePattern]
|
||||
messagePatterns*: seq[MessagePattern]
|
||||
|
||||
#################################
|
||||
# Noise state machine
|
||||
#################################
|
||||
|
||||
# The Cipher State as in https://noiseprotocol.org/noise.html#the-cipherstate-object
|
||||
# Contains an encryption key k and a nonce n (used in Noise as a counter)
|
||||
CipherState* = object
|
||||
k: ChaChaPolyKey
|
||||
n: uint64
|
||||
|
||||
# The Symmetric State as in https://noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Contains a Cipher State cs, the chaining key ck and the handshake hash value h
|
||||
SymmetricState* = object
|
||||
cs: CipherState
|
||||
ck: ChaChaPolyKey
|
||||
h: MDigest[256]
|
||||
|
||||
# The Handshake State as in https://noiseprotocol.org/noise.html#the-handshakestate-object
|
||||
# Contains
|
||||
# - the local and remote ephemeral/static keys e,s,re,rs (if any)
|
||||
# - the initiator flag (true if the user creating the state is the handshake initiator, false otherwise)
|
||||
# - the handshakePattern (containing the handshake protocol name, and (pre)message patterns)
|
||||
# This object is futher extended from specifications by storing:
|
||||
# - a message pattern index msgPatternIdx indicating the next handshake message pattern to process
|
||||
# - the user's preshared psk, if any
|
||||
HandshakeState = object
|
||||
s: KeyPair
|
||||
e: KeyPair
|
||||
rs: EllipticCurveKey
|
||||
re: EllipticCurveKey
|
||||
ss: SymmetricState
|
||||
initiator: bool
|
||||
handshakePattern: HandshakePattern
|
||||
msgPatternIdx: uint8
|
||||
psk: seq[byte]
|
||||
|
||||
# When a handshake is complete, the HandhshakeResult will contain the two
|
||||
# Cipher States used to encrypt/decrypt outbound/inbound messages
|
||||
# The recipient static key rs and handshake hash values h are stored to address some possible future applications (channel-binding, session management, etc.).
|
||||
# However, are not required by Noise specifications and are thus optional
|
||||
HandshakeResult = object
|
||||
csInbound: CipherState
|
||||
csOutbound: CipherState
|
||||
# Optional fields:
|
||||
rs: EllipticCurveKey
|
||||
h: MDigest[256]
|
||||
|
||||
#################################
|
||||
# Waku Payload V2
|
||||
#################################
|
||||
|
||||
# PayloadV2 defines an object for Waku payloads with version 2 as in
|
||||
# https://rfc.vac.dev/spec/35/#public-keys-serialization
|
||||
# It contains a protocol ID field, the handshake message (for Noise handshakes) and
|
||||
@ -71,7 +176,10 @@ type
|
||||
handshakeMessage: seq[NoisePublicKey]
|
||||
transportMessage: seq[byte]
|
||||
|
||||
#################################
|
||||
# Some useful error types
|
||||
#################################
|
||||
|
||||
NoiseError* = object of LPError
|
||||
NoiseHandshakeError* = object of NoiseError
|
||||
NoiseEmptyChaChaPolyInput* = object of NoiseError
|
||||
@ -81,9 +189,66 @@ type
|
||||
NoiseMalformedHandshake* = object of NoiseError
|
||||
|
||||
|
||||
#################################
|
||||
# Constants (supported protocols)
|
||||
#################################
|
||||
const
|
||||
|
||||
# The empty pre message patterns
|
||||
EmptyPreMessagePattern: seq[PreMessagePattern] = @[]
|
||||
|
||||
# Supported Noise handshake patterns as defined in https://rfc.vac.dev/spec/35/#specification
|
||||
NoiseHandshakePatterns* = {
|
||||
"K1K1": HandshakePattern(name: "Noise_K1K1_25519_ChaChaPoly_SHA256",
|
||||
preMessagePatterns: @[PreMessagePattern(direction: D_r, tokens: @[T_s]),
|
||||
PreMessagePattern(direction: D_l, tokens: @[T_s])],
|
||||
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
|
||||
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_es]),
|
||||
MessagePattern(direction: D_r, tokens: @[T_se])]
|
||||
),
|
||||
|
||||
"XK1": HandshakePattern(name: "Noise_XK1_25519_ChaChaPoly_SHA256",
|
||||
preMessagePatterns: @[PreMessagePattern(direction: D_l, tokens: @[T_s])],
|
||||
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
|
||||
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_es]),
|
||||
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
|
||||
),
|
||||
|
||||
"XX": HandshakePattern(name: "Noise_XX_25519_ChaChaPoly_SHA256",
|
||||
preMessagePatterns: EmptyPreMessagePattern,
|
||||
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
|
||||
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_s, T_es]),
|
||||
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
|
||||
),
|
||||
|
||||
"XXpsk0": HandshakePattern(name: "Noise_XXpsk0_25519_ChaChaPoly_SHA256",
|
||||
preMessagePatterns: EmptyPreMessagePattern,
|
||||
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_psk, T_e]),
|
||||
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_s, T_es]),
|
||||
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
|
||||
)
|
||||
}.toTable()
|
||||
|
||||
|
||||
# Supported Protocol ID for PayloadV2 objects
|
||||
# Protocol IDs are defined according to https://rfc.vac.dev/spec/35/#specification
|
||||
PayloadV2ProtocolIDs* = {
|
||||
|
||||
"": 0.uint8,
|
||||
"Noise_K1K1_25519_ChaChaPoly_SHA256": 10.uint8,
|
||||
"Noise_XK1_25519_ChaChaPoly_SHA256": 11.uint8,
|
||||
"Noise_XX_25519_ChaChaPoly_SHA256": 12.uint8,
|
||||
"Noise_XXpsk0_25519_ChaChaPoly_SHA256": 13.uint8,
|
||||
"ChaChaPoly": 30.uint8
|
||||
|
||||
}.toTable()
|
||||
|
||||
|
||||
#################################################################
|
||||
|
||||
#################################
|
||||
# Utilities
|
||||
#################################
|
||||
|
||||
# Generates random byte sequences of given size
|
||||
proc randomSeqByte*(rng: var BrHmacDrbgContext, size: int): seq[byte] =
|
||||
@ -98,10 +263,354 @@ proc genKeyPair*(rng: var BrHmacDrbgContext): KeyPair =
|
||||
keyPair.publicKey = keyPair.privateKey.public()
|
||||
return keyPair
|
||||
|
||||
# Gets private key from a key pair
|
||||
proc getPrivateKey*(keypair: KeyPair): EllipticCurveKey =
|
||||
return keypair.privateKey
|
||||
|
||||
# Gets public key from a key pair
|
||||
proc getPublicKey*(keypair: KeyPair): EllipticCurveKey =
|
||||
return keypair.publicKey
|
||||
|
||||
# Prints Handshake Patterns using Noise pattern layout
|
||||
proc print*(self: HandshakePattern)
|
||||
{.raises: [IOError, NoiseMalformedHandshake].}=
|
||||
try:
|
||||
if self.name != "":
|
||||
stdout.write self.name, ":\n"
|
||||
stdout.flushFile()
|
||||
#We iterate over pre message patterns, if any
|
||||
if self.preMessagePatterns != EmptyPreMessagePattern:
|
||||
for pattern in self.preMessagePatterns:
|
||||
stdout.write " ", pattern.direction
|
||||
var first = true
|
||||
for token in pattern.tokens:
|
||||
if first:
|
||||
stdout.write " ", token
|
||||
first = false
|
||||
else:
|
||||
stdout.write ", ", token
|
||||
stdout.write "\n"
|
||||
stdout.flushFile()
|
||||
stdout.write " ...\n"
|
||||
stdout.flushFile()
|
||||
#We iterate over message patterns
|
||||
for pattern in self.messagePatterns:
|
||||
stdout.write " ", pattern.direction
|
||||
var first = true
|
||||
for token in pattern.tokens:
|
||||
if first:
|
||||
stdout.write " ", token
|
||||
first = false
|
||||
else:
|
||||
stdout.write ", ", token
|
||||
stdout.write "\n"
|
||||
stdout.flushFile()
|
||||
except:
|
||||
raise newException(NoiseMalformedHandshake, "HandshakePattern malformed")
|
||||
|
||||
# Hashes a Noise protocol name using SHA256
|
||||
proc hashProtocol(protocolName: string): MDigest[256] =
|
||||
|
||||
# The output hash value
|
||||
var hash: MDigest[256]
|
||||
|
||||
# From Noise specification: Section 5.2
|
||||
# http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# If protocol_name is less than or equal to HASHLEN bytes in length,
|
||||
# sets h equal to protocol_name with zero bytes appended to make HASHLEN bytes.
|
||||
# Otherwise sets h = HASH(protocol_name).
|
||||
if protocolName.len <= 32:
|
||||
hash.data[0..protocolName.high] = protocolName.toBytes
|
||||
else:
|
||||
hash = sha256.digest(protocolName)
|
||||
|
||||
return hash
|
||||
|
||||
# Performs a Diffie-Hellman operation between two elliptic curve keys (one private, one public)
|
||||
proc dh*(private: EllipticCurveKey, public: EllipticCurveKey): EllipticCurveKey =
|
||||
|
||||
# The output result of the Diffie-Hellman operation
|
||||
var output: EllipticCurveKey
|
||||
|
||||
# Since the EC multiplication writes the result to the input, we copy the input to the output variable
|
||||
output = public
|
||||
# We execute the DH operation
|
||||
EllipticCurve.mul(output, private)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
#################################################################
|
||||
|
||||
# Noise state machine primitives
|
||||
|
||||
# Overview :
|
||||
# - Alice and Bob process (i.e. read and write, based on their role) each token appearing in a handshake pattern, consisting of pre-message and message patterns;
|
||||
# - Both users initialize and update according to processed tokens a Handshake State, a Symmetric State and a Cipher State;
|
||||
# - A preshared key psk is processed by calling MixKeyAndHash(psk);
|
||||
# - When an ephemeral public key e is read or written, the handshake hash value h is updated by calling mixHash(e); If the handshake expects a psk, MixKey(e) is further called
|
||||
# - When an encrypted static public key s or a payload message m is read, it is decrypted with decryptAndHash;
|
||||
# - When a static public key s or a payload message is writted, it is encrypted with encryptAndHash;
|
||||
# - When any Diffie-Hellman token ee, es, se, ss is read or written, the chaining key ck is updated by calling MixKey on the computed secret;
|
||||
# - If all tokens are processed, users compute two new Cipher States by calling Split;
|
||||
# - The two Cipher States obtained from Split are used to encrypt/decrypt outbound/inbound messages.
|
||||
|
||||
#################################
|
||||
# Cipher State Primitives
|
||||
#################################
|
||||
|
||||
# Checks if a Cipher State has an encryption key set
|
||||
proc hasKey(cs: CipherState): bool =
|
||||
return (cs.k != EmptyKey)
|
||||
|
||||
# Encrypts a plaintext using key material in a Noise Cipher State
|
||||
# The CipherState is updated increasing the nonce (used as a counter in Noise) by one
|
||||
proc encryptWithAd*(state: var CipherState, ad, plaintext: openArray[byte]): seq[byte]
|
||||
{.raises: [Defect, NoiseNonceMaxError].} =
|
||||
|
||||
# We raise an error if encryption is called using a Cipher State with nonce greater than MaxNonce
|
||||
if state.n > NonceMax:
|
||||
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
|
||||
|
||||
var ciphertext: seq[byte]
|
||||
|
||||
# If an encryption key is set in the Cipher state, we proceed with encryption
|
||||
if state.hasKey:
|
||||
|
||||
# The output is the concatenation of the ciphertext and authorization tag
|
||||
# We define its length accordingly
|
||||
ciphertext = newSeqOfCap[byte](plaintext.len + sizeof(ChaChaPolyTag))
|
||||
|
||||
# Since ChaChaPoly encryption primitive overwrites the input with the output,
|
||||
# we copy the plaintext in the output ciphertext variable and we pass it to encryption
|
||||
ciphertext.add(plaintext)
|
||||
|
||||
# The nonce is read from the input CipherState
|
||||
# By Noise specification the nonce is 8 bytes long out of the 12 bytes supported by ChaChaPoly
|
||||
var nonce: ChaChaPolyNonce
|
||||
nonce[4..<12] = toBytesLE(state.n)
|
||||
|
||||
# We perform encryption and we store the authorization tag
|
||||
var authorizationTag: ChaChaPolyTag
|
||||
ChaChaPoly.encrypt(state.k, nonce, authorizationTag, ciphertext, ad)
|
||||
|
||||
# We append the authorization tag to ciphertext
|
||||
ciphertext.add(authorizationTag)
|
||||
|
||||
# We increase the Cipher state nonce
|
||||
inc state.n
|
||||
# If the nonce is greater than the maximum allowed nonce, we raise an exception
|
||||
if state.n > NonceMax:
|
||||
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
|
||||
|
||||
trace "encryptWithAd", authorizationTag = byteutils.toHex(authorizationTag), ciphertext = ciphertext, nonce = state.n - 1
|
||||
|
||||
# Otherwise we return the input plaintext according to specification http://www.noiseprotocol.org/noise.html#the-cipherstate-object
|
||||
else:
|
||||
|
||||
ciphertext = @plaintext
|
||||
debug "encryptWithAd called with no encryption key set. Returning plaintext."
|
||||
|
||||
return ciphertext
|
||||
|
||||
# Decrypts a ciphertext using key material in a Noise Cipher State
|
||||
# The CipherState is updated increasing the nonce (used as a counter in Noise) by one
|
||||
proc decryptWithAd*(state: var CipherState, ad, ciphertext: openArray[byte]): seq[byte]
|
||||
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
|
||||
|
||||
# We raise an error if encryption is called using a Cipher State with nonce greater than MaxNonce
|
||||
if state.n > NonceMax:
|
||||
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
|
||||
|
||||
var plaintext: seq[byte]
|
||||
|
||||
# If an encryption key is set in the Cipher state, we proceed with decryption
|
||||
if state.hasKey:
|
||||
|
||||
# We read the authorization appendend at the end of a ciphertext
|
||||
let inputAuthorizationTag = ciphertext.toOpenArray(ciphertext.len - ChaChaPolyTag.len, ciphertext.high).intoChaChaPolyTag
|
||||
|
||||
var
|
||||
authorizationTag: ChaChaPolyTag
|
||||
nonce: ChaChaPolyNonce
|
||||
|
||||
# The nonce is read from the input CipherState
|
||||
# By Noise specification the nonce is 8 bytes long out of the 12 bytes supported by ChaChaPoly
|
||||
nonce[4..<12] = toBytesLE(state.n)
|
||||
|
||||
# Since ChaChaPoly decryption primitive overwrites the input with the output,
|
||||
# we copy the ciphertext (authorization tag excluded) in the output plaintext variable and we pass it to decryption
|
||||
plaintext = ciphertext[0..(ciphertext.high - ChaChaPolyTag.len)]
|
||||
|
||||
ChaChaPoly.decrypt(state.k, nonce, authorizationTag, plaintext, ad)
|
||||
|
||||
# We check if the input authorization tag matches the decryption authorization tag
|
||||
if inputAuthorizationTag != authorizationTag:
|
||||
debug "decryptWithAd failed", plaintext = plaintext, ciphertext = ciphertext, inputAuthorizationTag = inputAuthorizationTag, authorizationTag = authorizationTag
|
||||
raise newException(NoiseDecryptTagError, "decryptWithAd failed tag authentication.")
|
||||
|
||||
# We increase the Cipher state nonce
|
||||
inc state.n
|
||||
# If the nonce is greater than the maximum allowed nonce, we raise an exception
|
||||
if state.n > NonceMax:
|
||||
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
|
||||
|
||||
trace "decryptWithAd", inputAuthorizationTag = inputAuthorizationTag, authorizationTag = authorizationTag, nonce = state.n
|
||||
|
||||
# Otherwise we return the input ciphertext according to specification http://www.noiseprotocol.org/noise.html#the-cipherstate-object
|
||||
else:
|
||||
|
||||
plaintext = @ciphertext
|
||||
debug "decryptWithAd called with no encryption key set. Returning ciphertext."
|
||||
|
||||
return plaintext
|
||||
|
||||
# Sets the nonce of a Cipher State
|
||||
proc setNonce*(cs: var CipherState, nonce: uint64) =
|
||||
cs.n = nonce
|
||||
|
||||
# Sets the key of a Cipher State
|
||||
proc setCipherStateKey*(cs: var CipherState, key: ChaChaPolyKey) =
|
||||
cs.k = key
|
||||
|
||||
# Generates a random Symmetric Cipher State for test purposes
|
||||
proc randomCipherState*(rng: var BrHmacDrbgContext, nonce: uint64 = 0): CipherState =
|
||||
var randomCipherState: CipherState
|
||||
brHmacDrbgGenerate(rng, randomCipherState.k)
|
||||
setNonce(randomCipherState, nonce)
|
||||
return randomCipherState
|
||||
|
||||
|
||||
# Gets the key of a Cipher State
|
||||
proc getKey*(cs: CipherState): ChaChaPolyKey =
|
||||
return cs.k
|
||||
|
||||
# Gets the nonce of a Cipher State
|
||||
proc getNonce*(cs: CipherState): uint64 =
|
||||
return cs.n
|
||||
|
||||
#################################
|
||||
# Symmetric State primitives
|
||||
#################################
|
||||
|
||||
# Initializes a Symmetric State
|
||||
proc init*(_: type[SymmetricState], hsPattern: HandshakePattern): SymmetricState =
|
||||
var ss: SymmetricState
|
||||
# We compute the hash of the protocol name
|
||||
ss.h = hsPattern.name.hashProtocol
|
||||
# We initialize the chaining key ck
|
||||
ss.ck = ss.h.data.intoChaChaPolyKey
|
||||
# We initialize the Cipher state
|
||||
ss.cs = CipherState(k: EmptyKey)
|
||||
return ss
|
||||
|
||||
# MixKey as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Updates a Symmetric state chaining key and symmetric state
|
||||
proc mixKey*(ss: var SymmetricState, inputKeyMaterial: ChaChaPolyKey) =
|
||||
# We derive two keys using HKDF
|
||||
var tempKeys: array[2, ChaChaPolyKey]
|
||||
sha256.hkdf(ss.ck, inputKeyMaterial, [], tempKeys)
|
||||
# We update ck and the Cipher state's key k using the output of HDKF
|
||||
ss.ck = tempKeys[0]
|
||||
ss.cs = CipherState(k: tempKeys[1])
|
||||
trace "mixKey", ck = ss.ck, k = ss.cs.k
|
||||
|
||||
# MixHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Hashes data into a Symmetric State's handshake hash value h
|
||||
proc mixHash*(ss: var SymmetricState, data: openArray[byte]) =
|
||||
# We prepare the hash context
|
||||
var ctx: sha256
|
||||
ctx.init()
|
||||
# We add the previous handshake hash
|
||||
ctx.update(ss.h.data)
|
||||
# We append the input data
|
||||
ctx.update(data)
|
||||
# We hash and store the result in the Symmetric State's handshake hash value
|
||||
ss.h = ctx.finish()
|
||||
trace "mixHash", hash = ss.h.data
|
||||
|
||||
# mixKeyAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Combines MixKey and MixHash
|
||||
proc mixKeyAndHash*(ss: var SymmetricState, inputKeyMaterial: openArray[byte]) {.used.} =
|
||||
var tempKeys: array[3, ChaChaPolyKey]
|
||||
# Derives 3 keys using HKDF, the chaining key and the input key material
|
||||
sha256.hkdf(ss.ck, inputKeyMaterial, [], tempKeys)
|
||||
# Sets the chaining key
|
||||
ss.ck = tempKeys[0]
|
||||
# Updates the handshake hash value
|
||||
ss.mixHash(tempKeys[1])
|
||||
# Updates the Cipher state's key
|
||||
# Note for later support of 512 bits hash functions: "If HASHLEN is 64, then truncates tempKeys[2] to 32 bytes."
|
||||
ss.cs = CipherState(k: tempKeys[2])
|
||||
|
||||
# EncryptAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Combines encryptWithAd and mixHash
|
||||
proc encryptAndHash*(ss: var SymmetricState, plaintext: openArray[byte]): seq[byte]
|
||||
{.raises: [Defect, NoiseNonceMaxError].} =
|
||||
# The output ciphertext
|
||||
var ciphertext: seq[byte]
|
||||
# Note that if an encryption key is not set yet in the Cipher state, ciphertext will be equal to plaintex
|
||||
ciphertext = ss.cs.encryptWithAd(ss.h.data, plaintext)
|
||||
# We call mixHash over the result
|
||||
ss.mixHash(ciphertext)
|
||||
return ciphertext
|
||||
|
||||
# DecryptAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Combines decryptWithAd and mixHash
|
||||
proc decryptAndHash*(ss: var SymmetricState, ciphertext: openArray[byte]): seq[byte]
|
||||
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
|
||||
# The output plaintext
|
||||
var plaintext: seq[byte]
|
||||
# Note that if an encryption key is not set yet in the Cipher state, plaintext will be equal to ciphertext
|
||||
plaintext = ss.cs.decryptWithAd(ss.h.data, ciphertext)
|
||||
# According to specification, the ciphertext enters mixHash (and not the plaintext)
|
||||
ss.mixHash(ciphertext)
|
||||
return plaintext
|
||||
|
||||
# Split as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
|
||||
# Once a handshake is complete, returns two Cipher States to encrypt/decrypt outbound/inbound messages
|
||||
proc split*(ss: var SymmetricState): tuple[cs1, cs2: CipherState] =
|
||||
# Derives 2 keys using HKDF and the chaining key
|
||||
var tempKeys: array[2, ChaChaPolyKey]
|
||||
sha256.hkdf(ss.ck, [], [], tempKeys)
|
||||
# Returns a tuple of two Cipher States initialized with the derived keys
|
||||
return (CipherState(k: tempKeys[0]), CipherState(k: tempKeys[1]))
|
||||
|
||||
# Gets the chaining key field of a Symmetric State
|
||||
proc getChainingKey*(ss: SymmetricState): ChaChaPolyKey =
|
||||
return ss.ck
|
||||
|
||||
# Gets the handshake hash field of a Symmetric State
|
||||
proc getHandshakeHash*(ss: SymmetricState): MDigest[256] =
|
||||
return ss.h
|
||||
|
||||
# Gets the Cipher State field of a Symmetric State
|
||||
proc getCipherState*(ss: SymmetricState): CipherState =
|
||||
return ss.cs
|
||||
|
||||
#################################
|
||||
# Handshake State primitives
|
||||
#################################
|
||||
|
||||
# Initializes a Handshake State
|
||||
proc init*(_: type[HandshakeState], hsPattern: HandshakePattern, psk: seq[byte] = @[]): HandshakeState =
|
||||
# The output Handshake State
|
||||
var hs: HandshakeState
|
||||
# By default the Handshake State initiator flag is set to false
|
||||
# Will be set to true when the user associated to the handshake state starts an handshake
|
||||
hs.initiator = false
|
||||
# We copy the information on the handshake pattern for which the state is initialized (protocol name, handshake pattern, psk)
|
||||
hs.handshakePattern = hsPattern
|
||||
hs.psk = psk
|
||||
# We initialize the Symmetric State
|
||||
hs.ss = SymmetricState.init(hsPattern)
|
||||
return hs
|
||||
|
||||
#################################################################
|
||||
|
||||
#################################
|
||||
# ChaChaPoly Symmetric Cipher
|
||||
#################################
|
||||
|
||||
# ChaChaPoly encryption
|
||||
# It takes a Cipher State (with key, nonce, and associated data) and encrypts a plaintext
|
||||
@ -145,17 +654,23 @@ proc decrypt*(
|
||||
# the ciphertext (overwritten to plaintext) (data), the associated data (ad)
|
||||
ChaChaPoly.decrypt(state.k, state.nonce, tagOut, plaintext, state.ad)
|
||||
#TODO: add unpadding
|
||||
trace "decrypt", tagIn = tagIn.shortLog, tagOut = tagOut.shortLog, nonce = state.nonce
|
||||
trace "decrypt", tagIn = tagIn, tagOut = tagOut, nonce = state.nonce
|
||||
# We check if the authorization tag computed while decrypting is the same as the input tag
|
||||
if tagIn != tagOut:
|
||||
debug "decrypt failed", plaintext = shortLog(plaintext)
|
||||
raise newException(NoiseDecryptTagError, "decrypt tag authentication failed.")
|
||||
return plaintext
|
||||
|
||||
# Generates a random ChaChaPolyKey for testing encryption/decryption
|
||||
proc randomChaChaPolyKey*(rng: var BrHmacDrbgContext): ChaChaPolyKey =
|
||||
var key: ChaChaPolyKey
|
||||
brHmacDrbgGenerate(rng, key)
|
||||
return key
|
||||
|
||||
# Generates a random ChaChaPoly Cipher State for testing encryption/decryption
|
||||
proc randomChaChaPolyCipherState*(rng: var BrHmacDrbgContext): ChaChaPolyCipherState =
|
||||
var randomCipherState: ChaChaPolyCipherState
|
||||
brHmacDrbgGenerate(rng, randomCipherState.k)
|
||||
randomCipherState.k = randomChaChaPolyKey(rng)
|
||||
brHmacDrbgGenerate(rng, randomCipherState.nonce)
|
||||
randomCipherState.ad = newSeq[byte](32)
|
||||
brHmacDrbgGenerate(rng, randomCipherState.ad)
|
||||
@ -164,7 +679,9 @@ proc randomChaChaPolyCipherState*(rng: var BrHmacDrbgContext): ChaChaPolyCipherS
|
||||
|
||||
#################################################################
|
||||
|
||||
#################################
|
||||
# Noise Public keys
|
||||
#################################
|
||||
|
||||
# Checks equality between two Noise public keys
|
||||
proc `==`(k1, k2: NoisePublicKey): bool =
|
||||
@ -255,10 +772,11 @@ proc decryptNoisePublicKey*(cs: ChaChaPolyCipherState, noisePublicKey: NoisePubl
|
||||
decryptedNoisePublicKey = noisePublicKey
|
||||
return decryptedNoisePublicKey
|
||||
|
||||
|
||||
#################################################################
|
||||
|
||||
#################################
|
||||
# Payload encoding/decoding procedures
|
||||
#################################
|
||||
|
||||
# Checks equality between two PayloadsV2 objects
|
||||
proc `==`(p1, p2: PayloadV2): bool =
|
||||
@ -334,7 +852,6 @@ proc serializePayloadV2*(self: PayloadV2): Result[seq[byte], cstring] =
|
||||
return ok(payload)
|
||||
|
||||
|
||||
|
||||
# Deserializes a byte sequence to a PayloadV2 object according to https://rfc.vac.dev/spec/35/.
|
||||
# The input serialized payload concatenates the output PayloadV2 object fields as
|
||||
# payload = ( protocolId || serializedHandshakeMessageLen || serializedHandshakeMessage || transportMessageLen || transportMessage)
|
||||
@ -376,7 +893,7 @@ proc deserializePayloadV2*(payload: seq[byte]): Result[PayloadV2, cstring]
|
||||
# If the key is unencrypted, we only read the X coordinate of the EC public key and we deserialize into a Noise Public Key
|
||||
if flag == 0:
|
||||
pkLen = 1 + EllipticCurveKey.len
|
||||
handshake_message.add intoNoisePublicKey(payload[i..<i+pkLen])
|
||||
handshakeMessage.add intoNoisePublicKey(payload[i..<i+pkLen])
|
||||
i += pkLen
|
||||
written += pkLen
|
||||
# If the key is encrypted, we only read the encrypted X coordinate and the authorization tag, and we deserialize into a Noise Public Key
|
||||
|
Loading…
x
Reference in New Issue
Block a user