deploy: 48cfaa3320f00d69503df1bd3953ee7cde992eb4

This commit is contained in:
rymnc 2022-09-13 11:07:37 +00:00
parent e6bb2683dd
commit d8cf1bfd0a
3 changed files with 308 additions and 1 deletions

View File

@ -0,0 +1,305 @@
# Quickstart for running nwaku on a DigitalOcean Droplet
This guide explains how to run a nwaku node on a
DigitalOcean Droplet. We enable the following protocols -
1. Relay
2. Store
3. DNS Discovery
4. Discv5
A Droplet is a simple virtual machine that runs in DigitalOcean's datacenters.
Note that Droplets do cost money, the size described in the guide costs approximately $12 a month.
The guide makes heavy use of the `doctl` cli to make it as UI agnostic as possible.
There are similar steps to accomplish the same through DigitalOcean's cloud console, accessible [here](https://cloud.digitalocean.com/)
## Prerequisites
1. A DigitalOcean account. Upon signing up, you have $100 worth of credits to use.
## 1. Get the `doctl` binary
Follow this [guide](https://docs.digitalocean.com/reference/doctl/how-to/install/) to install,
and configure the `doctl` cli, which will help with setting up the Droplet.
> Note: It is not required to set up the droplet that is mentioned in the `doctl` cli guide
## 2. Set up SSH credentials
Run the following command -
```bash
export DROPLET_SSH_KEY_PATH=~/.ssh/id_nwaku_droplet
ssh-keygen -f $DROPLET_SSH_KEY_PATH
```
Press `enter` twice, i.e do NOT set a passphrase.
Run the following command -
```bash
export DROPLET_SSH_PUBLIC_KEY=$(cat "$DROPLET_SSH_KEY_PATH".pub)
```
*Alternatively*, if you would like to supply your own credentials, make sure that the public key is in the `DROPLET_SSH_PUBLIC_KEY` env variable.
Lastly, add the ssh key to your DigitalOcean account -
```bash
doctl compute ssh-key create nwaku-key --public-key="$DROPLET_SSH_PUBLIC_KEY"
```
## 3. Select the region closest to you
Run the following command to get the list of available
regions -
```bash
doctl compute region list | grep true
```
You should get an output similar to this -
```bash
nyc1 New York 1 true
sgp1 Singapore 1 true
lon1 London 1 true
nyc3 New York 3 true
ams3 Amsterdam 3 true
fra1 Frankfurt 1 true
tor1 Toronto 1 true
blr1 Bangalore 1 true
sfo3 San Francisco 3 true
```
Choose the region closest to you, and run the following command -
```bash
export DROPLET_REGION=<slug>
```
For example, if you live in NYC -
```bash
export DROPLET_REGION=nyc1
```
Note that it is *optional* to choose the datacenter closest to you. This is merely done for operational efficiency.
## 4. Select the OS distribution
Run the following command to get the list of distributions -
```bash
doctl compute image list-distribution
```
You should get an output similar to this -
```bash
ID Name Type Distribution Slug Public Min Disk
78547182 1.5.8 x64 snapshot RancherOS rancheros true 15
106433672 7 x64 snapshot CentOS centos-7-x64 true 9
106434098 9 Stream x64 snapshot CentOS centos-stream-9-x64 true 10
106434191 8 Stream x64 snapshot CentOS centos-stream-8-x64 true 10
...
```
Choose the distribution you are most comfortable with, and then run the following command
```bash
export DROPLET_IMAGE=<slug>
```
For example, if you chose Debian 11 x64 -
```bash
export DROPLET_IMAGE=debian-11-x64
```
## 5. Select the size of the Droplet
Run the following command to get the list of Droplet sizes for the previously selected region -
```bash
doctl compute size list
```
You should get an output similar to this -
```bash
Slug Description Memory VCPUs Disk Price Monthly Price Hourly
s-1vcpu-512mb-10gb Basic 512 1 10 4.00 0.005950
s-1vcpu-1gb Basic 1024 1 25 6.00 0.008930
s-1vcpu-1gb-amd Basic AMD 1024 1 25 7.00 0.010420
s-1vcpu-1gb-intel Basic Intel 1024 1 25 7.00 0.010420
s-1vcpu-2gb Basic 2048 1 50 12.00 0.017860
s-1vcpu-2gb-amd Basic AMD 2048 1 50 14.00 0.020830
s-1vcpu-2gb-intel Basic Intel 2048 1 50 14.00 0.020830
s-2vcpu-2gb Legacy Basic 2048 2 60 18.00 0.026790
...
```
> Note: To compile the nwaku binary, a minimum of 2GB of RAM is required. You may choose a smaller Droplet, however, you would have to supply the binary in an alternate manner, i.e via the official release on Github, or compiling it on another machine and copying it over. Currently, we only supply binaries for macOS and Ubuntu.
Choose the Droplet size that you are most comfortable with, and then run the following command -
```bash
export DROPLET_SIZE=<slug>
```
For example, `s-1vcpu-2gb` is more than capable to handle the protocols we mentioned above -
```bash
export DROPLET_SIZE=s-1vcpu-2gb
```
## 6. Create the Droplet
Run the following command to create the droplet -
> Note: Droplet names must be valid hostnames, i.e they must only contain alphanumeric characters and hyphens (-)
```bash
export DROPLET_NAME=<your-droplet-name>
export DROPLET_ID=$(doctl compute droplet create --region=$DROPLET_REGION --image=$DROPLET_IMAGE --size=$DROPLET_SIZE --enable-monitoring --format=ID --wait $DROPLET_NAME | sed -n '2 p')
```
For example, to create a droplet named `nwaku` -
```bash
export DROPLET_NAME=nwaku
export DROPLET_ID=$(doctl compute droplet create --region=$DROPLET_REGION --image=$DROPLET_IMAGE --size=$DROPLET_SIZE --enable-monitoring --format=ID --wait $DROPLET_NAME | sed -n '2 p')
```
## 7. Create a Domain and attach it to the droplet (OPTIONAL)
Follow this [guide](https://docs.digitalocean.com/products/networking/dns/how-to/add-domains/) to create a domain, and add it to the droplet appropriately.
## 8. SSH into the Droplet
You can get the following details in the email that DigitalOcean sends upon successful creation of the Droplet -
1. username
2. password
3. public ipv4 address
Since the public key we previously generated was automatically added to the authorized_keys list, we can run the following command to ssh into the Droplet -
```bash
export DROPLET_USERNAME=<username from email>
export DROPLET_IP=<public ipv4 address from email>
ssh -i $DROPLET_SSH_KEY_PATH $DROPLET_USERNAME@$DROPLET_IP
```
For example, if the username was `root`, and the ipv4 address was `0.0.0.0`,
```bash
export USERNAME=root
export IP=0.0.0.0
ssh -i $DROPLET_SSH_KEY_PATH $DROPLET_USERNAME@$DROPLET_IP
```
Enter the password received in the email.
## 9. Build nwaku
To build `nwaku`, follow this [guide](./how-to/build.md)
OR
To fetch the latest release from Github, navigate to https://github.com/status-im/nwaku/releases and download the latest tarball for your distribution.
This [guide](https://www.itprotoday.com/development-techniques-and-management/how-install-targz-file-ubuntu-linux) describes how to install a tarball for your distribution.
OR
Run the following script to copy over the wakunode2 binary (from the host machine) -
```bash
scp -i $DROPLET_SSH_KEY_PATH ./build/wakunode2 $DROPLET_USERNAME@$DROPLET_IP:~/wakunode2
```
## 10. Set up a terminal multiplexer of choice
You may decide to use either `screen` or `tmux` to be able to reattach to the process
after closing the ssh connection.
Installation instructions for -
1. [screen](https://linuxhint.com/screen-linux/)
2. [tmux](https://linuxhint.com/install-tmux-ubuntu/)
## 10. Run nwaku
First, start the `screen` or `tmux` session by following the instructions of the terminal multiplexer chosen previously -
1. [screen](https://linuxize.com/post/how-to-use-linux-screen/#starting-linux-screen)
2. [tmux](https://linuxize.com/post/getting-started-with-tmux/#starting-your-first-tmux-session)
Run the following command to run `nwaku` -
*Note the path to the wakunode2 binary*
a. Add the parent directory of the wakunode2 binary to your environment:
If you built it locally and copied it via scp -
```bash
export WAKUNODE_DIR="$pwd"
```
OR
If you compiled it on the Droplet -
```bash
export WAKUNODE_DIR="$pwd"/build
```
b. Choose the fleet you wish to connect your node to:
- waku prod: enrtree://ANTL4SLG2COUILKAPE7EF2BYNL2SHSHVCHLRD5J7ZJLN5R3PRJD2Y@prod.waku.nodes.status.im
- waku test: enrtree://AOFTICU2XWDULNLZGRMQS4RIZPAZEHYMV4FYHAPW563HNRAOERP7C@test.waku.nodes.status.im
```bash
export WAKU_FLEET=<fleet>
```
c. Run `nwaku`:
If you set up a domain previously -
```bash
export DOMAIN_NAME=<your-domain-name>
$WAKUNODE_DIR/wakunode2 \
--store:true \
--persist-messages \
--dns-discovery \
--dns-discovery-url:"$WAKU_FLEET"
--dns4-domain-name="$DOMAIN_NAME"
--discv5-discovery:true
```
OR
If you did not set up a domain -
```bash
$WAKUNODE_DIR/wakunode2 \
--store:true \
--persist-messages \
--dns-discovery \
--dns-discovery-url:"$WAKU_FLEET"
--discv5-discovery:true
```
You now have nwaku running! You can verify this by observing the logs. The logs should show that the node completed 7 steps of setup, and is actively discovering other nodes.
You may now detach from stdout, by following instructions according to the terminal multiplexer chosen previously -
1. [screen](https://linuxize.com/post/how-to-use-linux-screen/#detach-from-linux-screen-session)
2. [tmux](https://linuxize.com/post/getting-started-with-tmux/#starting-your-first-tmux-session)
To re-attach and observe the logs at a later date, follow these instructions -
1. [screen](https://linuxize.com/post/how-to-use-linux-screen/#reattach-to-a-linux-screen)
2. [tmux](https://linuxize.com/post/getting-started-with-tmux/#re-attaching-to-tmux-session)
For alternative configurations, refer to this [guide](./how-to/configure.md)

View File

@ -4,6 +4,8 @@ This guide explains how to build and run a nwaku node
for the most common use cases. for the most common use cases.
For a more advanced configuration see our [configuration guides](./how-to/configure.md) For a more advanced configuration see our [configuration guides](./how-to/configure.md)
To quickly set up a nwaku node on DigitalOcean, refer to this [guide](./droplet-quickstart.md)
## 1. Build ## 1. Build
[Build the nwaku node](./how-to/build.md) [Build the nwaku node](./how-to/build.md)

View File

@ -2,7 +2,7 @@
# libtool - Provide generalized library-building support services. # libtool - Provide generalized library-building support services.
# Generated automatically by config.status (libbacktrace) version-unused # Generated automatically by config.status (libbacktrace) version-unused
# Libtool was configured on host fv-az39-51: # Libtool was configured on host fv-az198-947:
# NOTE: Changes made to this file will be lost: look at ltmain.sh. # NOTE: Changes made to this file will be lost: look at ltmain.sh.
# #
# Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005,