chore|feat (waku-rln-relay): modules reorganization|Initial test for capturing events using nim-web3 (#941)

* first edition

* adds the full test scenario

* fixes typos

* fixes a bug in the supplied command

* further edits the description

* displays the chat prompt after spam detection

* updates changelog

* minor wording fix

* adds a new test file for onchain rln relay

* adds the Event proc

* adds one working example of event subscription

* defines a new unitt test for event subscription

* adds the new test file

* cleans up the code

* adds a working event subscription for faucet contract

* wip

* makes faucet test conditional

* updates contract byte codes

* adds a working test for event subscription and cleans up the tests

* fixes case

* adss toUInt256 unit function

* enables the tests

* fixes a bug

* undo commented tests

* cleans up the test

* logs the pk

* removes excess entry in the changelog

* fixes spacing

* comments

* removes unused test codes

* adds the conditional compilation for onchain tests

* uncomments offchain tests

* removes onchain tests

* reorganizes the code and moves the rln contract data into a separate module

* deletes txt files

* beautifies the code

* beautifies the code

* removes an excess line

* more formatting fixes

* minor fix

* updates the case of membership fee const

* renames compare to diff

* renames time to e

* edits the number of arguments of the send proc

* fixes a comment alignment

* fixes indentation

* fixed id style

* splits check from condition

* fixes a naming mismatch
This commit is contained in:
Sanaz Taheri Boshrooyeh 2022-05-10 14:09:18 -07:00 committed by GitHub
parent b2eb992bd3
commit 47a9fcfd77
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 962 additions and 569 deletions

View File

@ -27,6 +27,8 @@ import
when defined(rln):
import ./v2/test_waku_rln_relay
when defined(onchain_rln):
import ./v2/test_waku_rln_relay_onchain
# TODO Only enable this once swap module is integrated more nicely as a dependency, i.e. as submodule with CI etc

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -6,7 +6,8 @@ import
testutils/unittests, chronos, chronicles, stint, web3,
stew/byteutils, stew/shims/net as stewNet,
libp2p/crypto/crypto,
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils, waku_rln_relay_types],
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils,
waku_rln_relay_types],
../../waku/v2/node/wakunode2,
../test_helpers,
./test_utils
@ -14,258 +15,7 @@ import
const RLNRELAY_PUBSUB_TOPIC = "waku/2/rlnrelay/proto"
const RLNRELAY_CONTENT_TOPIC = "waku/2/rlnrelay/proto"
# POSEIDON_HASHER_CODE holds the bytecode of Poseidon hasher solidity smart contract:
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/crypto/PoseidonHasher.sol
# the solidity contract is compiled separately and the resultant bytecode is copied here
const POSEIDON_HASHER_CODE = readFile("tests/v2/poseidonHasher.txt")
# MEMBERSHIP_CONTRACT_CODE contains the bytecode of the membership solidity smart contract:
# https://github.com/kilic/rlnapp/blob/master/packages/contracts/contracts/RLN.sol
# the solidity contract is compiled separately and the resultant bytecode is copied here
const MEMBERSHIP_CONTRACT_CODE = readFile("tests/v2/membershipContract.txt")
# the membership contract code in solidity
# uint256 public immutable MEMBERSHIP_DEPOSIT;
# uint256 public immutable DEPTH;
# uint256 public immutable SET_SIZE;
# uint256 public pubkeyIndex = 0;
# mapping(uint256 => uint256) public members;
# IPoseidonHasher public poseidonHasher;
# event MemberRegistered(uint256 indexed pubkey, uint256 indexed index);
# event MemberWithdrawn(uint256 indexed pubkey, uint256 indexed index);
# constructor(
# uint256 membershipDeposit,
# uint256 depth,
# address _poseidonHasher
# ) public {
# MEMBERSHIP_DEPOSIT = membershipDeposit;
# DEPTH = depth;
# SET_SIZE = 1 << depth;
# poseidonHasher = IPoseidonHasher(_poseidonHasher);
# }
# function register(uint256 pubkey) external payable {
# require(pubkeyIndex < SET_SIZE, "RLN, register: set is full");
# require(msg.value == MEMBERSHIP_DEPOSIT, "RLN, register: membership deposit is not satisfied");
# _register(pubkey);
# }
# function registerBatch(uint256[] calldata pubkeys) external payable {
# require(pubkeyIndex + pubkeys.length <= SET_SIZE, "RLN, registerBatch: set is full");
# require(msg.value == MEMBERSHIP_DEPOSIT * pubkeys.length, "RLN, registerBatch: membership deposit is not satisfied");
# for (uint256 i = 0; i < pubkeys.length; i++) {
# _register(pubkeys[i]);
# }
# }
# function withdrawBatch(
# uint256[] calldata secrets,
# uint256[] calldata pubkeyIndexes,
# address payable[] calldata receivers
# ) external {
# uint256 batchSize = secrets.length;
# require(batchSize != 0, "RLN, withdrawBatch: batch size zero");
# require(batchSize == pubkeyIndexes.length, "RLN, withdrawBatch: batch size mismatch pubkey indexes");
# require(batchSize == receivers.length, "RLN, withdrawBatch: batch size mismatch receivers");
# for (uint256 i = 0; i < batchSize; i++) {
# _withdraw(secrets[i], pubkeyIndexes[i], receivers[i]);
# }
# }
# function withdraw(
# uint256 secret,
# uint256 _pubkeyIndex,
# address payable receiver
# ) external {
# _withdraw(secret, _pubkeyIndex, receiver);
# }
contract(MembershipContract):
proc register(pubkey: Uint256) # external payable
# proc registerBatch(pubkeys: seq[Uint256]) # external payable
# TODO will add withdraw function after integrating the keyGeneration function (required to compute public keys from secret keys)
# proc withdraw(secret: Uint256, pubkeyIndex: Uint256, receiver: Address)
# proc withdrawBatch( secrets: seq[Uint256], pubkeyIndex: seq[Uint256], receiver: seq[Address])
proc uploadContract(ethClientAddress: string): Future[Address] {.async.} =
let web3 = await newWeb3(ethClientAddress)
debug "web3 connected to", ethClientAddress
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add =web3.defaultAccount
debug "contract deployer account address ", add
var balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
debug "Initial account balance: ", balance
# deploy the poseidon hash first
let
hasherReceipt = await web3.deployContract(POSEIDON_HASHER_CODE)
hasherAddress = hasherReceipt.contractAddress.get
debug "hasher address: ", hasherAddress
# encode membership contract inputs to 32 bytes zero-padded
let
membershipFeeEncoded = encode(MembershipFee).data
depthEncoded = encode(MERKLE_TREE_DEPTH.u256).data
hasherAddressEncoded = encode(hasherAddress).data
# this is the contract constructor input
contractInput = membershipFeeEncoded & depthEncoded & hasherAddressEncoded
debug "encoded membership fee: ", membershipFeeEncoded
debug "encoded depth: ", depthEncoded
debug "encoded hasher address: ", hasherAddressEncoded
debug "encoded contract input:" , contractInput
# deploy membership contract with its constructor inputs
let receipt = await web3.deployContract(MEMBERSHIP_CONTRACT_CODE, contractInput = contractInput)
var contractAddress = receipt.contractAddress.get
debug "Address of the deployed membership contract: ", contractAddress
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
# debug "Account balance after the contract deployment: ", balance
await web3.close()
debug "disconnected from ", ethClientAddress
return contractAddress
procSuite "Waku rln relay":
when defined(onchain_rln):
asyncTest "contract membership":
debug "ethereum client address", ETH_CLIENT
let contractAddress = await uploadContract(ETH_CLIENT)
# connect to the eth client
let web3 = await newWeb3(ETH_CLIENT)
debug "web3 connected to", ETH_CLIENT
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add = web3.defaultAccount
debug "contract deployer account address ", add
# prepare a contract sender to interact with it
var sender = web3.contractSender(MembershipContract, contractAddress) # creates a Sender object with a web3 field and contract address of type Address
# send takes three parameters, c: ContractCallBase, value = 0.u256, gas = 3000000'u64 gasPrice = 0
# should use send proc for the contract functions that update the state of the contract
let tx = await sender.register(20.u256).send(value = MembershipFee)
debug "The hash of registration tx: ", tx # value is the membership fee
# var members: array[2, uint256] = [20.u256, 21.u256]
# debug "This is the batch registration result ", await sender.registerBatch(members).send(value = (members.len * membershipFee)) # value is the membership fee
# balance = await web3.provider.eth_getBalance(web3.defaultAccount , "latest")
# debug "Balance after registration: ", balance
await web3.close()
debug "disconnected from", ETH_CLIENT
asyncTest "registration procedure":
# deploy the contract
let contractAddress = await uploadContract(ETH_CLIENT)
# prepare rln-relay peer inputs
let
web3 = await newWeb3(ETH_CLIENT)
accounts = await web3.provider.eth_accounts()
# choose one of the existing accounts for the rln-relay peer
ethAccountAddress = accounts[9]
await web3.close()
# create an RLN instance
var rlnInstance = createRLNInstance()
check: rlnInstance.isOk == true
# generate the membership keys
let membershipKeyPair = membershipKeyGen(rlnInstance.value)
check: membershipKeyPair.isSome
# initialize the WakuRLNRelay
var rlnPeer = WakuRLNRelay(membershipKeyPair: membershipKeyPair.get(),
membershipIndex: MembershipIndex(0),
ethClientAddress: ETH_CLIENT,
ethAccountAddress: ethAccountAddress,
membershipContractAddress: contractAddress)
# register the rln-relay peer to the membership contract
let is_successful = await rlnPeer.register()
check:
is_successful
asyncTest "mounting waku rln-relay":
let
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"),
Port(60000))
await node.start()
# deploy the contract
let membershipContractAddress = await uploadContract(ETH_CLIENT)
# prepare rln-relay inputs
let
web3 = await newWeb3(ETH_CLIENT)
accounts = await web3.provider.eth_accounts()
# choose one of the existing account for the rln-relay peer
ethAccountAddress = accounts[9]
await web3.close()
# create current peer's pk
var rlnInstance = createRLNInstance()
check rlnInstance.isOk == true
var rln = rlnInstance.value
# generate a key pair
var keypair = rln.membershipKeyGen()
doAssert(keypair.isSome())
# current peer index in the Merkle tree
let index = uint(5)
# Create a group of 10 members
var group = newSeq[IDCommitment]()
for i in 0..10:
var member_is_added: bool = false
if (uint(i) == index):
# insert the current peer's pk
group.add(keypair.get().idCommitment)
member_is_added = rln.insertMember(keypair.get().idCommitment)
doAssert(member_is_added)
debug "member key", key=keypair.get().idCommitment.toHex
else:
var memberKeypair = rln.membershipKeyGen()
doAssert(memberKeypair.isSome())
group.add(memberKeypair.get().idCommitment)
member_is_added = rln.insertMember(memberKeypair.get().idCommitment)
doAssert(member_is_added)
debug "member key", key=memberKeypair.get().idCommitment.toHex
let expectedRoot = rln.getMerkleRoot().value().toHex
debug "expected root ", expectedRoot
# start rln-relay
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
await node.mountRlnRelay(ethClientAddrOpt = some(EthClient),
ethAccAddrOpt = some(ethAccountAddress),
memContractAddOpt = some(membershipContractAddress),
groupOpt = some(group),
memKeyPairOpt = some(keypair.get()),
memIndexOpt = some(index),
pubsubTopic = RLNRELAY_PUBSUB_TOPIC,
contentTopic = RLNRELAY_CONTENT_TOPIC)
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
debug "calculated root ", calculatedRoot
check expectedRoot == calculatedRoot
await node.stop()
asyncTest "mount waku-rln-relay in the off-chain mode":
let
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
@ -278,69 +28,72 @@ procSuite "Waku rln relay":
# create a group of 100 membership keys
let
(groupKeys, root) = createMembershipList(100)
check groupKeys.len == 100
let
check:
groupKeys.len == 100
let
# convert the keys to MembershipKeyPair structs
groupKeyPairs = groupKeys.toMembershipKeyPairs()
# extract the id commitments
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
debug "groupKeyPairs", groupKeyPairs
debug "groupIDCommitments", groupIDCommitments
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# the corresponding key pair will be used to mount rlnRelay on the current node
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
let index = MembershipIndex(5)
# -------- mount rln-relay in the off-chain mode
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
await node.mountRlnRelay(groupOpt = some(groupIDCommitments),
memKeyPairOpt = some(groupKeyPairs[index]),
memIndexOpt = some(index),
onchainMode = false,
memIndexOpt = some(index),
onchainMode = false,
pubsubTopic = RLNRELAY_PUBSUB_TOPIC,
contentTopic = RLNRELAY_CONTENT_TOPIC)
# get the root of Merkle tree which is constructed inside the mountRlnRelay proc
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
debug "calculated root by mountRlnRelay", calculatedRoot
# this part checks whether the Merkle tree is constructed correctly inside the mountRlnRelay proc
# this check is done by comparing the tree root resulted from mountRlnRelay i.e., calculatedRoot
# this check is done by comparing the tree root resulted from mountRlnRelay i.e., calculatedRoot
# against the root which is the expected root
check calculatedRoot == root
check:
calculatedRoot == root
await node.stop()
suite "Waku rln relay":
test "key_gen Nim Wrappers":
var
var
merkleDepth: csize_t = 32
# parameters.key contains the parameters related to the Poseidon hasher
# to generate this file, clone this repo https://github.com/kilic/rln
# to generate this file, clone this repo https://github.com/kilic/rln
# and run the following command in the root directory of the cloned project
# cargo run --example export_test_keys
# the file is generated separately and copied here
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
pbytes = parameters.toBytes()
len : csize_t = uint(pbytes.len)
len: csize_t = uint(pbytes.len)
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
check:
# check the parameters.key is not empty
pbytes.len != 0
var
var
rlnInstance: RLN[Bn256]
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer, addr rlnInstance)
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer,
addr rlnInstance)
check:
# check whether the circuit parameters are generated successfully
res == true
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer : Buffer
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer: Buffer
keysBufferPtr = addr(keysBuffer)
done = key_gen(rlnInstance, keysBufferPtr)
done = key_gen(rlnInstance, keysBufferPtr)
check:
# check whether the keys are generated successfully
done == true
@ -350,8 +103,8 @@ suite "Waku rln relay":
check:
# the public and secret keys together are 64 bytes
generatedKeys.len == 64
debug "generated keys: ", generatedKeys
debug "generated keys: ", generatedKeys
test "membership Key Gen":
# create an RLN instance
var rlnInstance = createRLNInstance()
@ -359,15 +112,15 @@ suite "Waku rln relay":
rlnInstance.isOk == true
var key = membershipKeyGen(rlnInstance.value)
var empty : array[32,byte]
var empty: array[32, byte]
check:
key.isSome
key.get().idKey.len == 32
key.get().idCommitment.len == 32
key.get().idKey != empty
key.get().idCommitment != empty
debug "the generated membership key pair: ", key
debug "the generated membership key pair: ", key
test "get_root Nim binding":
# create an RLN instance which also includes an empty Merkle tree
@ -376,8 +129,8 @@ suite "Waku rln relay":
rlnInstance.isOk == true
# read the Merkle Tree root
var
root1 {.noinit.} : Buffer = Buffer()
var
root1 {.noinit.}: Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
check:
@ -385,22 +138,23 @@ suite "Waku rln relay":
root1.len == 32
# read the Merkle Tree root
var
root2 {.noinit.} : Buffer = Buffer()
var
root2 {.noinit.}: Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
check:
check:
get_root_successful2
root2.len == 32
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
var rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
var rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
# the two roots must be identical
check rootHex1 == rootHex2
check:
rootHex1 == rootHex2
test "getMerkleRoot utils":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
@ -409,16 +163,19 @@ suite "Waku rln relay":
# read the Merkle Tree root
var root1 = getMerkleRoot(rlnInstance.value())
check root1.isOk
check:
root1.isOk
let rootHex1 = root1.value().toHex
# read the Merkle Tree root
var root2 = getMerkleRoot(rlnInstance.value())
check root2.isOk
check:
root2.isOk
let rootHex2 = root2.value().toHex
# the two roots must be identical
check rootHex1 == rootHex2
check:
rootHex1 == rootHex2
test "update_next_member Nim Wrapper":
# create an RLN instance which also includes an empty Merkle tree
@ -428,7 +185,8 @@ suite "Waku rln relay":
# generate a key pair
var keypair = membershipKeyGen(rlnInstance.value)
check keypair.isSome()
check:
keypair.isSome()
var pkBuffer = toBuffer(keypair.get().idCommitment)
let pkBufferPtr = addr pkBuffer
@ -436,17 +194,18 @@ suite "Waku rln relay":
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
check:
member_is_added == true
test "delete_member Nim wrapper":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# delete the first member
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
check deletion_success
check:
deletion_success
test "insertMember rln utils":
# create an RLN instance which also includes an empty Merkle tree
@ -456,17 +215,18 @@ suite "Waku rln relay":
var rln = rlnInstance.value
# generate a key pair
var keypair = rln.membershipKeyGen()
check keypair.isSome()
check:
rln.insertMember(keypair.get().idCommitment)
keypair.isSome()
check:
rln.insertMember(keypair.get().idCommitment)
test "removeMember rln utils":
# create an RLN instance which also includes an empty Merkle tree
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value
check:
check:
rln.removeMember(MembershipIndex(0))
test "Merkle tree consistency check between deletion and insertion":
@ -476,14 +236,14 @@ suite "Waku rln relay":
rlnInstance.isOk == true
# read the Merkle Tree root
var
root1 {.noinit.} : Buffer = Buffer()
var
root1 {.noinit.}: Buffer = Buffer()
rootPtr1 = addr(root1)
get_root_successful1 = get_root(rlnInstance.value, rootPtr1)
check:
get_root_successful1
root1.len == 32
# generate a key pair
var keypair = membershipKeyGen(rlnInstance.value)
check: keypair.isSome()
@ -492,49 +252,52 @@ suite "Waku rln relay":
# add the member to the tree
var member_is_added = update_next_member(rlnInstance.value, pkBufferPtr)
check member_is_added
check:
member_is_added
# read the Merkle Tree root after insertion
var
root2 {.noinit.} : Buffer = Buffer()
var
root2 {.noinit.}: Buffer = Buffer()
rootPtr2 = addr(root2)
get_root_successful2 = get_root(rlnInstance.value, rootPtr2)
check:
get_root_successful2
root2.len == 32
# delete the first member
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = delete_member(rlnInstance.value, deleted_member_index)
check deletion_success
check:
deletion_success
# read the Merkle Tree root after the deletion
var
root3 {.noinit.} : Buffer = Buffer()
var
root3 {.noinit.}: Buffer = Buffer()
rootPtr3 = addr(root3)
get_root_successful3 = get_root(rlnInstance.value, rootPtr3)
check:
get_root_successful3
root3.len == 32
var rootValue1 = cast[ptr array[32,byte]] (root1.`ptr`)
var rootValue1 = cast[ptr array[32, byte]] (root1.`ptr`)
let rootHex1 = rootValue1[].toHex
debug "The initial root", rootHex1
var rootValue2 = cast[ptr array[32,byte]] (root2.`ptr`)
var rootValue2 = cast[ptr array[32, byte]] (root2.`ptr`)
let rootHex2 = rootValue2[].toHex
debug "The root after insertion", rootHex2
var rootValue3 = cast[ptr array[32,byte]] (root3.`ptr`)
var rootValue3 = cast[ptr array[32, byte]] (root3.`ptr`)
let rootHex3 = rootValue3[].toHex
debug "The root after deletion", rootHex3
# the root must change after the insertion
check: not(rootHex1 == rootHex2)
## The initial root of the tree (empty tree) must be identical to
## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion
check rootHex1 == rootHex3
check:
rootHex1 == rootHex3
test "Merkle tree consistency check between deletion and insertion using rln utils":
# create an RLN instance
var rlnInstance = createRLNInstance()
@ -544,29 +307,35 @@ suite "Waku rln relay":
# read the Merkle Tree root
var root1 = rln.getMerkleRoot()
check root1.isOk
check:
root1.isOk
let rootHex1 = root1.value().toHex()
# generate a key pair
var keypair = rln.membershipKeyGen()
check keypair.isSome()
let member_inserted = rln.insertMember(keypair.get().idCommitment)
check member_inserted
check:
keypair.isSome()
let member_inserted = rln.insertMember(keypair.get().idCommitment)
check:
member_inserted
# read the Merkle Tree root after insertion
var root2 = rln.getMerkleRoot()
check root2.isOk
check:
root2.isOk
let rootHex2 = root2.value().toHex()
# delete the first member
# delete the first member
var deleted_member_index = MembershipIndex(0)
let deletion_success = rln.removeMember(deleted_member_index)
check deletion_success
check:
deletion_success
# read the Merkle Tree root after the deletion
var root3 = rln.getMerkleRoot()
check root3.isOk
check:
root3.isOk
let rootHex3 = root3.value().toHex()
@ -575,35 +344,40 @@ suite "Waku rln relay":
debug "The root after deletion", rootHex3
# the root must change after the insertion
check not(rootHex1 == rootHex2)
check:
not(rootHex1 == rootHex2)
## The initial root of the tree (empty tree) must be identical to
## The initial root of the tree (empty tree) must be identical to
## the root of the tree after one insertion followed by a deletion
check rootHex1 == rootHex3
check:
rootHex1 == rootHex3
test "hash Nim Wrappers":
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# prepare the input
var
var
msg = "Hello".toBytes()
hashInput = appendLength(msg)
hashInputBuffer = toBuffer(hashInput)
hashInputBuffer = toBuffer(hashInput)
# prepare other inputs to the hash function
var outputBuffer: Buffer
let hashSuccess = hash(rlnInstance.value, addr hashInputBuffer, addr outputBuffer)
check hashSuccess
let outputArr = cast[ptr array[32,byte]](outputBuffer.`ptr`)[]
check:
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" == outputArr.toHex()
var
hashOutput = cast[ptr array[32,byte]] (outputBuffer.`ptr`)[]
let hashSuccess = hash(rlnInstance.value, addr hashInputBuffer,
addr outputBuffer)
check:
hashSuccess
let outputArr = cast[ptr array[32, byte]](outputBuffer.`ptr`)[]
check:
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" ==
outputArr.toHex()
var
hashOutput = cast[ptr array[32, byte]] (outputBuffer.`ptr`)[]
hashOutputHex = hashOutput.toHex()
debug "hash output", hashOutputHex
@ -614,26 +388,27 @@ suite "Waku rln relay":
check:
rlnInstance.isOk == true
let rln = rlnInstance.value
# prepare the input
let msg = "Hello".toBytes()
let hash = rln.hash(msg)
check:
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" == hash.toHex()
"efb8ac39dc22eaf377fe85b405b99ba78dbc2f3f32494add4501741df946bd1d" ==
hash.toHex()
test "create a list of membership keys and construct a Merkle tree based on the list":
let
let
groupSize = 100
(list, root) = createMembershipList(groupSize)
(list, root) = createMembershipList(groupSize)
debug "created membership key list", list
debug "the Merkle tree root", root
check:
list.len == groupSize # check the number of keys
list.len == groupSize # check the number of keys
root.len == HASH_HEX_SIZE # check the size of the calculated tree root
test "check correctness of toMembershipKeyPairs and calcMerkleRoot":
let groupKeys = STATIC_GROUP_KEYS
@ -648,14 +423,14 @@ suite "Waku rln relay":
debug "groupIDCommitments", groupIDCommitments
debug "root", root
check:
check:
# check that the correct number of key pairs is created
groupKeyPairs.len == StaticGroupSize
# compare the calculated root against the correct root
root == STATIC_GROUP_MERKLE_ROOT
test "RateLimitProof Protobuf encode/init test":
var
var
proof: ZKSNARK
merkleRoot: MerkleNode
epoch: Epoch
@ -663,14 +438,14 @@ suite "Waku rln relay":
shareY: MerkleNode
nullifier: Nullifier
# populate fields with dummy values
for x in proof.mitems : x = 1
for x in merkleRoot.mitems : x = 2
for x in epoch.mitems : x = 3
for x in shareX.mitems : x = 4
for x in shareY.mitems : x = 5
for x in nullifier.mitems : x = 6
let
for x in proof.mitems: x = 1
for x in merkleRoot.mitems: x = 2
for x in epoch.mitems: x = 3
for x in shareX.mitems: x = 4
for x in shareY.mitems: x = 5
for x in nullifier.mitems: x = 6
let
rateLimitProof = RateLimitProof(proof: proof,
merkleRoot: merkleRoot,
epoch: epoch,
@ -686,16 +461,17 @@ suite "Waku rln relay":
test "test proofVerify and proofGen for a valid proof":
var rlnInstance = createRLNInstance()
check rlnInstance.isOk
check:
rlnInstance.isOk
var rln = rlnInstance.value
let
let
# create a membership key pair
memKeys = membershipKeyGen(rln).get()
# peer's index in the Merkle Tree
index = 5
# Create a Merkle tree with random members
# Create a Merkle tree with random members
for i in 0..10:
var member_is_added: bool = false
if (i == index):
@ -706,27 +482,30 @@ suite "Waku rln relay":
let memberKeys = rln.membershipKeyGen()
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
# check the member is added
check member_is_added
check:
member_is_added
# prepare the message
# prepare the message
let messageBytes = "Hello".toBytes()
# prepare the epoch
var epoch : Epoch
debug "epoch", epochHex=epoch.toHex()
var epoch: Epoch
debug "epoch", epochHex = epoch.toHex()
# generate proof
let proofRes = rln.proofGen(data = messageBytes,
let proofRes = rln.proofGen(data = messageBytes,
memKeys = memKeys,
memIndex = MembershipIndex(index),
epoch = epoch)
check proofRes.isOk()
check:
proofRes.isOk()
let proof = proofRes.value
# verify the proof
let verified = rln.proofVerify(data = messageBytes,
proof = proof)
check verified == true
check:
verified == true
test "test proofVerify and proofGen for an invalid proof":
var rlnInstance = createRLNInstance()
@ -734,13 +513,13 @@ suite "Waku rln relay":
rlnInstance.isOk == true
var rln = rlnInstance.value
let
let
# create a membership key pair
memKeys = membershipKeyGen(rln).get()
# peer's index in the Merkle Tree
index = 5
# Create a Merkle tree with random members
# Create a Merkle tree with random members
for i in 0..10:
var member_is_added: bool = false
if (i == index):
@ -751,50 +530,56 @@ suite "Waku rln relay":
let memberKeys = rln.membershipKeyGen()
member_is_added = rln.insertMember(memberKeys.get().idCommitment)
# check the member is added
check member_is_added
check:
member_is_added
# prepare the message
# prepare the message
let messageBytes = "Hello".toBytes()
# prepare the epoch
var epoch : Epoch
debug "epoch in bytes", epochHex=epoch.toHex()
var epoch: Epoch
debug "epoch in bytes", epochHex = epoch.toHex()
let badIndex = 4
# generate proof
let proofRes = rln.proofGen(data = messageBytes,
let proofRes = rln.proofGen(data = messageBytes,
memKeys = memKeys,
memIndex = MembershipIndex(badIndex),
epoch = epoch)
check proofRes.isOk()
check:
proofRes.isOk()
let proof = proofRes.value
# verify the proof (should not be verified)
let verified = rln.proofVerify(data = messageBytes,
proof = proof)
check verified == false
check:
verified == false
test "toEpoch and fromEpoch consistency check":
# check edge cases
let
time = uint64.high
epoch = time.toEpoch()
decodedTime = epoch.fromEpoch()
check time == decodedTime
debug "encoded and decode time", time=time, epoch=epoch, decodedTime=decodedTime
let
epoch = uint64.high # rln epoch
epochBytes = epoch.toEpoch()
decodedEpoch = epochBytes.fromEpoch()
check:
epoch == decodedEpoch
debug "encoded and decode time", epoch = epoch, epochBytes = epochBytes,
decodedEpoch = decodedEpoch
test "Epoch comparison":
# check edge cases
let
let
time1 = uint64.high
time2 = uint64.high - 1
epoch1 = time1.toEpoch()
epoch2 = time2.toEpoch()
check compare(epoch1, epoch2) == int64(1)
check compare(epoch2, epoch1) == int64(-1)
check:
diff(epoch1, epoch2) == int64(1)
diff(epoch2, epoch1) == int64(-1)
test "updateLog and hasDuplicate tests":
let
let
wakurlnrelay = WakuRLNRelay()
epoch = getCurrentEpoch()
@ -816,10 +601,13 @@ suite "Waku rln relay":
for index, x in shareX3.mpairs: shareX3[index] = 3
let shareY3 = shareX3
let
wm1 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier1, shareX: shareX1, shareY: shareY1))
wm2 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier2, shareX: shareX2, shareY: shareY2))
wm3 = WakuMessage(proof: RateLimitProof(epoch: epoch, nullifier: nullifier3, shareX: shareX3, shareY: shareY3))
let
wm1 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier1, shareX: shareX1, shareY: shareY1))
wm2 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier2, shareX: shareX2, shareY: shareY2))
wm3 = WakuMessage(proof: RateLimitProof(epoch: epoch,
nullifier: nullifier3, shareX: shareX3, shareY: shareY3))
# check whether hasDuplicate correctly finds records with the same nullifiers but different secret shares
# no duplicate for wm1 should be found, since the log is empty
@ -843,7 +631,7 @@ suite "Waku rln relay":
# wm3 has the same nullifier as wm1 but different secret shares, it should be detected as duplicate
let result3 = wakurlnrelay.hasDuplicate(wm3)
check:
result3.isOk
result3.isOk
# it is a duplicate
result3.value == true
@ -859,10 +647,10 @@ suite "Waku rln relay":
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
debug "groupKeyPairs", groupKeyPairs
debug "groupIDCommitments", groupIDCommitments
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# index indicates the position of a membership key pair in the static list of group keys i.e., groupKeyPairs
# the corresponding key pair will be used to mount rlnRelay on the current node
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
# index also represents the index of the leaf in the Merkle tree that contains node's commitment key
let index = MembershipIndex(5)
# create an RLN instance
@ -873,24 +661,25 @@ suite "Waku rln relay":
# add members
discard rln.addAll(groupIDCommitments)
let
wakuRlnRelay = WakuRLNRelay(membershipIndex: index, membershipKeyPair: groupKeyPairs[index], rlnInstance: rln)
let
wakuRlnRelay = WakuRLNRelay(membershipIndex: index,
membershipKeyPair: groupKeyPairs[index], rlnInstance: rln)
# get the current epoch time
# get the current epoch time
let time = epochTime()
# create some messages from the same peer and append rln proof to them, except wm4
var
var
wm1 = WakuMessage(payload: "Valid message".toBytes())
proofAdded1 = wakuRlnRelay.appendRLNProof(wm1, time)
# another message in the same epoch as wm1, it will break the messaging rate limit
wm2 = WakuMessage(payload: "Spam".toBytes())
proofAdded2 = wakuRlnRelay.appendRLNProof(wm2, time)
# wm3 points to the next epoch
# wm3 points to the next epoch
wm3 = WakuMessage(payload: "Valid message".toBytes())
proofAdded3 = wakuRlnRelay.appendRLNProof(wm3, time+EPOCH_UNIT_SECONDS)
wm4 = WakuMessage(payload: "Invalid message".toBytes())
wm4 = WakuMessage(payload: "Invalid message".toBytes())
# checks proofs are added
check:
proofAdded1
@ -903,15 +692,15 @@ suite "Waku rln relay":
msgValidate1 = wakuRlnRelay.validateMessage(wm1, some(time))
# wm2 is published within the same Epoch as wm1 and should be found as spam
msgValidate2 = wakuRlnRelay.validateMessage(wm2, some(time))
# a valid message should be validated successfully
# a valid message should be validated successfully
msgValidate3 = wakuRlnRelay.validateMessage(wm3, some(time))
# wm4 has no rln proof and should not be validated
msgValidate4 = wakuRlnRelay.validateMessage(wm4, some(time))
check:
msgValidate1 == MessageValidationResult.Valid
msgValidate2 == MessageValidationResult.Spam
msgValidate2 == MessageValidationResult.Spam
msgValidate3 == MessageValidationResult.Valid
msgValidate4 == MessageValidationResult.Invalid

View File

@ -0,0 +1,271 @@
# contains rln-relay tests that require interaction with Ganache i.e., onchain tests
{.used.}
import
std/options, sequtils, times,
testutils/unittests, chronos, chronicles, stint, web3, json,
stew/byteutils, stew/shims/net as stewNet,
libp2p/crypto/crypto,
../../waku/v2/protocol/waku_rln_relay/[rln, waku_rln_relay_utils,
waku_rln_relay_types, rln_relay_contract],
../../waku/v2/node/wakunode2,
../test_helpers,
./test_utils
const RLNRELAY_PUBSUB_TOPIC = "waku/2/rlnrelay/proto"
const RLNRELAY_CONTENT_TOPIC = "waku/2/rlnrelay/proto"
# contract ABI
contract(MembershipContract):
proc register(pubkey: Uint256) # external payable
proc MemberRegistered(pubkey: Uint256, index: Uint256) {.event.}
# proc registerBatch(pubkeys: seq[Uint256]) # external payable
# proc withdraw(secret: Uint256, pubkeyIndex: Uint256, receiver: Address)
# proc withdrawBatch( secrets: seq[Uint256], pubkeyIndex: seq[Uint256], receiver: seq[Address])
# a util function used for testing purposes
# it deploys membership contract on Ganache (or any Eth client available on ETH_CLIENT address)
# must be edited if used for a different contract than membership contract
proc uploadRLNContract*(ethClientAddress: string): Future[Address] {.async.} =
let web3 = await newWeb3(ethClientAddress)
debug "web3 connected to", ethClientAddress
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add = web3.defaultAccount
debug "contract deployer account address ", add
var balance = await web3.provider.eth_getBalance(web3.defaultAccount, "latest")
debug "Initial account balance: ", balance
# deploy the poseidon hash contract and gets its address
let
hasherReceipt = await web3.deployContract(POSEIDON_HASHER_CODE)
hasherAddress = hasherReceipt.contractAddress.get
debug "hasher address: ", hasherAddress
# encode membership contract inputs to 32 bytes zero-padded
let
membershipFeeEncoded = encode(MEMBERSHIP_FEE).data
depthEncoded = encode(MERKLE_TREE_DEPTH.u256).data
hasherAddressEncoded = encode(hasherAddress).data
# this is the contract constructor input
contractInput = membershipFeeEncoded & depthEncoded & hasherAddressEncoded
debug "encoded membership fee: ", membershipFeeEncoded
debug "encoded depth: ", depthEncoded
debug "encoded hasher address: ", hasherAddressEncoded
debug "encoded contract input:", contractInput
# deploy membership contract with its constructor inputs
let receipt = await web3.deployContract(MEMBERSHIP_CONTRACT_CODE,
contractInput = contractInput)
var contractAddress = receipt.contractAddress.get
debug "Address of the deployed membership contract: ", contractAddress
balance = await web3.provider.eth_getBalance(web3.defaultAccount, "latest")
debug "Account balance after the contract deployment: ", balance
await web3.close()
debug "disconnected from ", ethClientAddress
return contractAddress
procSuite "Waku-rln-relay":
asyncTest "event subscription":
# preparation ------------------------------
debug "ethereum client address", ETH_CLIENT
let contractAddress = await uploadRLNContract(ETH_CLIENT)
# connect to the eth client
let web3 = await newWeb3(ETH_CLIENT)
debug "web3 connected to", ETH_CLIENT
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
debug "contract deployer account address ",
defaultAccount = web3.defaultAccount
# prepare a contract sender to interact with it
var contractObj = web3.contractSender(MembershipContract,
contractAddress) # creates a Sender object with a web3 field and contract address of type Address
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# generate the membership keys
let membershipKeyPair = membershipKeyGen(rlnInstance.value)
check:
membershipKeyPair.isSome
let pk = membershipKeyPair.get().idCommitment.toUInt256()
debug "membership commitment key", pk = pk
# test ------------------------------
var fut = newFuture[void]()
let s = await contractObj.subscribe(MemberRegistered, %*{"fromBlock": "0x0",
"address": contractAddress}) do(
pubkey: Uint256, index: Uint256){.raises: [Defect], gcsafe.}:
try:
debug "onRegister", pubkey = pubkey, index = index
check:
pubkey == pk
fut.complete()
except Exception as err:
# chronos still raises exceptions which inherit directly from Exception
doAssert false, err.msg
do (err: CatchableError):
echo "Error from subscription: ", err.msg
# register a member
let tx = await contractObj.register(pk).send(value = MEMBERSHIP_FEE)
debug "a member is registered", tx = tx
# wait for the event to be received
await fut
# release resources -----------------------
await web3.close()
asyncTest "insert a key to the membership contract":
# preparation ------------------------------
debug "ethereum client address", ETH_CLIENT
let contractAddress = await uploadRLNContract(ETH_CLIENT)
# connect to the eth client
let web3 = await newWeb3(ETH_CLIENT)
debug "web3 connected to", ETH_CLIENT
# fetch the list of registered accounts
let accounts = await web3.provider.eth_accounts()
web3.defaultAccount = accounts[1]
let add = web3.defaultAccount
debug "contract deployer account address ", add
# prepare a contract sender to interact with it
var sender = web3.contractSender(MembershipContract,
contractAddress) # creates a Sender object with a web3 field and contract address of type Address
# send takes the following parameters, c: ContractCallBase, value = 0.u256, gas = 3000000'u64 gasPrice = 0
# should use send proc for the contract functions that update the state of the contract
let tx = await sender.register(20.u256).send(value = MEMBERSHIP_FEE) # value is the membership fee
debug "The hash of registration tx: ", tx
# var members: array[2, uint256] = [20.u256, 21.u256]
# debug "This is the batch registration result ", await sender.registerBatch(members).send(value = (members.len * MEMBERSHIP_FEE)) # value is the membership fee
let balance = await web3.provider.eth_getBalance(web3.defaultAccount, "latest")
debug "Balance after registration: ", balance
await web3.close()
debug "disconnected from", ETH_CLIENT
asyncTest "registration procedure":
# preparation ------------------------------
# deploy the contract
let contractAddress = await uploadRLNContract(ETH_CLIENT)
# prepare rln-relay peer inputs
let
web3 = await newWeb3(ETH_CLIENT)
accounts = await web3.provider.eth_accounts()
# choose one of the existing accounts for the rln-relay peer
ethAccountAddress = accounts[0]
await web3.close()
# create an RLN instance
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
# generate the membership keys
let membershipKeyPair = membershipKeyGen(rlnInstance.value)
check:
membershipKeyPair.isSome
# test ------------------------------
# initialize the WakuRLNRelay
var rlnPeer = WakuRLNRelay(membershipKeyPair: membershipKeyPair.get(),
membershipIndex: MembershipIndex(0),
ethClientAddress: ETH_CLIENT,
ethAccountAddress: ethAccountAddress,
membershipContractAddress: contractAddress)
# register the rln-relay peer to the membership contract
let is_successful = await rlnPeer.register()
check:
is_successful
asyncTest "mounting waku rln-relay":
# preparation ------------------------------
let
nodeKey = crypto.PrivateKey.random(Secp256k1, rng[])[]
node = WakuNode.new(nodeKey, ValidIpAddress.init("0.0.0.0"),
Port(60000))
await node.start()
# deploy the contract
let membershipContractAddress = await uploadRLNContract(ETH_CLIENT)
# prepare rln-relay inputs
let
web3 = await newWeb3(ETH_CLIENT)
accounts = await web3.provider.eth_accounts()
# choose one of the existing account for the rln-relay peer
ethAccountAddress = accounts[9]
await web3.close()
# create current peer's pk
var rlnInstance = createRLNInstance()
check:
rlnInstance.isOk == true
var rln = rlnInstance.value
# generate a key pair
var keypair = rln.membershipKeyGen()
doAssert(keypair.isSome())
# current peer index in the Merkle tree
let index = uint(5)
# Create a group of 10 members
var group = newSeq[IDCommitment]()
for i in 0..10:
var member_is_added: bool = false
if (uint(i) == index):
# insert the current peer's pk
group.add(keypair.get().idCommitment)
member_is_added = rln.insertMember(keypair.get().idCommitment)
doAssert(member_is_added)
debug "member key", key = keypair.get().idCommitment.toHex
else:
var memberKeypair = rln.membershipKeyGen()
doAssert(memberKeypair.isSome())
group.add(memberKeypair.get().idCommitment)
member_is_added = rln.insertMember(memberKeypair.get().idCommitment)
doAssert(member_is_added)
debug "member key", key = memberKeypair.get().idCommitment.toHex
let expectedRoot = rln.getMerkleRoot().value().toHex
debug "expected root ", expectedRoot
# test ------------------------------
# start rln-relay
node.mountRelay(@[RLNRELAY_PUBSUB_TOPIC])
await node.mountRlnRelay(ethClientAddrOpt = some(EthClient),
ethAccAddrOpt = some(ethAccountAddress),
memContractAddOpt = some(membershipContractAddress),
groupOpt = some(group),
memKeyPairOpt = some(keypair.get()),
memIndexOpt = some(index),
pubsubTopic = RLNRELAY_PUBSUB_TOPIC,
contentTopic = RLNRELAY_CONTENT_TOPIC)
let calculatedRoot = node.wakuRlnRelay.rlnInstance.getMerkleRoot().value().toHex
debug "calculated root ", calculatedRoot
check:
expectedRoot == calculatedRoot
await node.stop()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,12 +1,12 @@
{.push raises: [Defect].}
import
import
std/sequtils, tables, times,
chronicles, options, chronos, stint,
web3,
stew/results,
stew/[byteutils, arrayops, endians2],
rln,
rln,
waku_rln_relay_types,
../waku_message
@ -16,7 +16,8 @@ logScope:
type RLNResult* = Result[RLN[Bn256], string]
type MerkleNodeResult* = Result[MerkleNode, string]
type RateLimitProofResult* = Result[RateLimitProof, string]
type SpamHandler* = proc(wakuMessage: WakuMessage): void {.gcsafe, closure, raises: [Defect].}
type SpamHandler* = proc(wakuMessage: WakuMessage): void {.gcsafe, closure,
raises: [Defect].}
# membership contract interface
contract(MembershipContract):
@ -26,14 +27,14 @@ contract(MembershipContract):
proc createRLNInstance*(d: int = MERKLE_TREE_DEPTH): RLNResult
{.raises: [Defect, IOError].} =
## generates an instance of RLN
## generates an instance of RLN
## An RLN instance supports both zkSNARKs logics and Merkle tree data structure and operations
## d indicates the depth of Merkle tree
var
## d indicates the depth of Merkle tree
var
rlnInstance: RLN[Bn256]
merkleDepth: csize_t = uint(d)
## parameters.key contains the prover and verifier keys
## to generate this file, clone this repo https://github.com/kilic/rln
## to generate this file, clone this repo https://github.com/kilic/rln
## and run the following command in the root directory of the cloned project
## cargo run --example export_test_keys
## the file is generated separately and copied here
@ -43,76 +44,84 @@ proc createRLNInstance*(d: int = MERKLE_TREE_DEPTH): RLNResult
## and then proceed as explained above
parameters = readFile("waku/v2/protocol/waku_rln_relay/parameters.key")
pbytes = parameters.toBytes()
len : csize_t = uint(pbytes.len)
len: csize_t = uint(pbytes.len)
parametersBuffer = Buffer(`ptr`: addr(pbytes[0]), len: len)
# check the parameters.key is not empty
if (pbytes.len == 0):
debug "error in parameters.key"
return err("error in parameters.key")
# create an instance of RLN
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer, addr rlnInstance)
let res = new_circuit_from_params(merkleDepth, addr parametersBuffer,
addr rlnInstance)
# check whether the circuit parameters are generated successfully
if (res == false):
if (res == false):
debug "error in parameters generation"
return err("error in parameters generation")
return ok(rlnInstance)
proc membershipKeyGen*(ctxPtr: RLN[Bn256]): Option[MembershipKeyPair] =
## generates a MembershipKeyPair that can be used for the registration into the rln membership contract
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer : Buffer
# keysBufferPtr will hold the generated key pairs i.e., secret and public keys
var
keysBuffer: Buffer
keysBufferPtr = addr(keysBuffer)
done = key_gen(ctxPtr, keysBufferPtr)
done = key_gen(ctxPtr, keysBufferPtr)
# check whether the keys are generated successfully
if(done == false):
debug "error in key generation"
return none(MembershipKeyPair)
var generatedKeys = cast[ptr array[64, byte]](keysBufferPtr.`ptr`)[]
# the public and secret keys together are 64 bytes
if (generatedKeys.len != 64):
debug "the generated keys are invalid"
return none(MembershipKeyPair)
# TODO define a separate proc to decode the generated keys to the secret and public components
var
secret: array[32, byte]
var
secret: array[32, byte]
public: array[32, byte]
for (i,x) in secret.mpairs: x = generatedKeys[i]
for (i,x) in public.mpairs: x = generatedKeys[i+32]
var
for (i, x) in secret.mpairs: x = generatedKeys[i]
for (i, x) in public.mpairs: x = generatedKeys[i+32]
var
keypair = MembershipKeyPair(idKey: secret, idCommitment: public)
return some(keypair)
proc toUInt256*(idCommitment: IDCommitment): UInt256 =
let pk = cast[UInt256](idCommitment)
return pk
proc register*(rlnPeer: WakuRLNRelay): Future[bool] {.async.} =
## registers the public key of the rlnPeer which is rlnPeer.membershipKeyPair.publicKey
## into the membership contract whose address is in rlnPeer.membershipContractAddress
let web3 = await newWeb3(rlnPeer.ethClientAddress)
web3.defaultAccount = rlnPeer.ethAccountAddress
# when the private key is set in a web3 instance, the send proc (sender.register(pk).send(MembershipFee))
# when the private key is set in a web3 instance, the send proc (sender.register(pk).send(MEMBERSHIP_FEE))
# does the signing using the provided key
web3.privateKey = rlnPeer.ethAccountPrivateKey
var sender = web3.contractSender(MembershipContract, rlnPeer.membershipContractAddress) # creates a Sender object with a web3 field and contract address of type Address
let pk = cast[UInt256](rlnPeer.membershipKeyPair.idCommitment)
discard await sender.register(pk).send(MembershipFee)
var sender = web3.contractSender(MembershipContract,
rlnPeer.membershipContractAddress) # creates a Sender object with a web3 field and contract address of type Address
let pk = toUInt256(rlnPeer.membershipKeyPair.idCommitment)
discard await sender.register(pk).send(MEMBERSHIP_FEE)
debug "pk", pk = pk
# TODO check the receipt and then return true/false
await web3.close()
return true
return true
proc appendLength*(input: openArray[byte]): seq[byte] =
## returns length prefixed version of the input
## with the following format [len<8>|input<var>]
## len: 8-byte value that represents the number of bytes in the `input`
## len is serialized in little-endian
## input: the supplied `input`
let
## input: the supplied `input`
let
# the length should be serialized in little-endian
len = toBytes(uint64(input.len), Endianness.littleEndian)
output = concat(@len, @input)
@ -125,32 +134,35 @@ proc toBuffer*(x: openArray[byte]): Buffer =
let output = Buffer(`ptr`: addr(temp[0]), len: uint(temp.len))
return output
proc hash*(rlnInstance: RLN[Bn256], data: openArray[byte]): MerkleNode =
## a thin layer on top of the Nim wrapper of the Poseidon hasher
debug "hash input", hashhex=data.toHex()
proc hash*(rlnInstance: RLN[Bn256], data: openArray[byte]): MerkleNode =
## a thin layer on top of the Nim wrapper of the Poseidon hasher
debug "hash input", hashhex = data.toHex()
var lenPrefData = appendLength(data)
var
var
hashInputBuffer = lenPrefData.toBuffer()
outputBuffer: Buffer # will holds the hash output
debug "hash input buffer length", bufflen=hashInputBuffer.len
let
debug "hash input buffer length", bufflen = hashInputBuffer.len
let
hashSuccess = hash(rlnInstance, addr hashInputBuffer, addr outputBuffer)
output = cast[ptr MerkleNode](outputBuffer.`ptr`)[]
return output
proc serialize(idKey: IDKey, memIndex: MembershipIndex, epoch: Epoch, msg: openArray[byte]): seq[byte] =
proc serialize(idKey: IDKey, memIndex: MembershipIndex, epoch: Epoch,
msg: openArray[byte]): seq[byte] =
## a private proc to convert RateLimitProof and the data to a byte seq
## this conversion is used in the proofGen proc
## the serialization is done as instructed in https://github.com/kilic/rln/blob/7ac74183f8b69b399e3bc96c1ae8ab61c026dc43/src/public.rs#L146
## [ id_key<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
let memIndexBytes = toBytes(uint64(memIndex), Endianness.littleEndian)
let lenPrefMsg = appendLength(msg)
let output = concat(@idKey, @memIndexBytes, @epoch, lenPrefMsg)
let output = concat(@idKey, @memIndexBytes, @epoch, lenPrefMsg)
return output
proc proofGen*(rlnInstance: RLN[Bn256], data: openArray[byte], memKeys: MembershipKeyPair, memIndex: MembershipIndex, epoch: Epoch): RateLimitProofResult =
proc proofGen*(rlnInstance: RLN[Bn256], data: openArray[byte],
memKeys: MembershipKeyPair, memIndex: MembershipIndex,
epoch: Epoch): RateLimitProofResult =
# serialize inputs
let serializedInputs = serialize(idKey = memKeys.idKey,
@ -168,12 +180,12 @@ proc proofGen*(rlnInstance: RLN[Bn256], data: openArray[byte], memKeys: Membersh
if not proofIsSuccessful:
return err("could not generate the proof")
var proofValue = cast[ptr array[416,byte]] (proof.`ptr`)
let proofBytes: array[416,byte] = proofValue[]
debug "proof content", proofHex=proofValue[].toHex
var proofValue = cast[ptr array[416, byte]] (proof.`ptr`)
let proofBytes: array[416, byte] = proofValue[]
debug "proof content", proofHex = proofValue[].toHex
## parse the proof as |zkSNARKs<256>|root<32>|epoch<32>|share_x<32>|share_y<32>|nullifier<32>|
let
let
proofOffset = 256
rootOffset = proofOffset + 32
epochOffset = rootOffset + 32
@ -181,8 +193,8 @@ proc proofGen*(rlnInstance: RLN[Bn256], data: openArray[byte], memKeys: Membersh
shareYOffset = shareXOffset + 32
nullifierOffset = shareYOffset + 32
var
zkproof: ZKSNARK
var
zkproof: ZKSNARK
proofRoot, shareX, shareY: MerkleNode
epoch: Epoch
nullifier: Nullifier
@ -209,7 +221,7 @@ proc serialize(proof: RateLimitProof, data: openArray[byte]): seq[byte] =
## the order of serialization is based on https://github.com/kilic/rln/blob/7ac74183f8b69b399e3bc96c1ae8ab61c026dc43/src/public.rs#L205
## [ proof<256>| root<32>| epoch<32>| share_x<32>| share_y<32>| nullifier<32> | signal_len<8> | signal<var> ]
let lenPrefMsg = appendLength(@data)
var proofBytes = concat(@(proof.proof),
var proofBytes = concat(@(proof.proof),
@(proof.merkleRoot),
@(proof.epoch),
@(proof.shareX),
@ -219,23 +231,24 @@ proc serialize(proof: RateLimitProof, data: openArray[byte]): seq[byte] =
return proofBytes
proc proofVerify*(rlnInstance: RLN[Bn256], data: openArray[byte], proof: RateLimitProof): bool =
var
proofBytes= serialize(proof, data)
proc proofVerify*(rlnInstance: RLN[Bn256], data: openArray[byte],
proof: RateLimitProof): bool =
var
proofBytes = serialize(proof, data)
proofBuffer = proofBytes.toBuffer()
f = 0.uint32
trace "serialized proof", proof=proofBytes.toHex()
trace "serialized proof", proof = proofBytes.toHex()
let verifyIsSuccessful = verify(rlnInstance, addr proofBuffer, addr f)
if not verifyIsSuccessful:
# something went wrong in verification
return false
return false
# f = 0 means the proof is verified
if f == 0:
return true
return false
proc insertMember*(rlnInstance: RLN[Bn256], idComm: IDCommitment): bool =
proc insertMember*(rlnInstance: RLN[Bn256], idComm: IDCommitment): bool =
var pkBuffer = toBuffer(idComm)
let pkBufferPtr = addr pkBuffer
@ -243,14 +256,14 @@ proc insertMember*(rlnInstance: RLN[Bn256], idComm: IDCommitment): bool =
var member_is_added = update_next_member(rlnInstance, pkBufferPtr)
return member_is_added
proc removeMember*(rlnInstance: RLN[Bn256], index: MembershipIndex): bool =
proc removeMember*(rlnInstance: RLN[Bn256], index: MembershipIndex): bool =
let deletion_success = delete_member(rlnInstance, index)
return deletion_success
proc getMerkleRoot*(rlnInstance: RLN[Bn256]): MerkleNodeResult =
proc getMerkleRoot*(rlnInstance: RLN[Bn256]): MerkleNodeResult =
# read the Merkle Tree root after insertion
var
root {.noinit.} : Buffer = Buffer()
var
root {.noinit.}: Buffer = Buffer()
rootPtr = addr(root)
get_root_successful = get_root(rlnInstance, rootPtr)
if (not get_root_successful): return err("could not get the root")
@ -259,54 +272,57 @@ proc getMerkleRoot*(rlnInstance: RLN[Bn256]): MerkleNodeResult =
var rootValue = cast[ptr MerkleNode] (root.`ptr`)[]
return ok(rootValue)
proc toMembershipKeyPairs*(groupKeys: seq[(string, string)]): seq[MembershipKeyPair] {.raises: [Defect, ValueError]} =
proc toMembershipKeyPairs*(groupKeys: seq[(string, string)]): seq[
MembershipKeyPair] {.raises: [Defect, ValueError].} =
## groupKeys is sequence of membership key tuples in the form of (identity key, identity commitment) all in the hexadecimal format
## the toMembershipKeyPairs proc populates a sequence of MembershipKeyPairs using the supplied groupKeys
var groupKeyPairs = newSeq[MembershipKeyPair]()
for i in 0..groupKeys.len-1:
let
let
idKey = groupKeys[i][0].hexToByteArray(32)
idCommitment = groupKeys[i][1].hexToByteArray(32)
groupKeyPairs.add(MembershipKeyPair(idKey: idKey, idCommitment: idCommitment))
groupKeyPairs.add(MembershipKeyPair(idKey: idKey,
idCommitment: idCommitment))
return groupKeyPairs
proc calcMerkleRoot*(list: seq[IDCommitment]): string {.raises: [Defect, IOError].} =
## returns the root of the Merkle tree that is computed from the supplied list
proc calcMerkleRoot*(list: seq[IDCommitment]): string {.raises: [Defect, IOError].} =
## returns the root of the Merkle tree that is computed from the supplied list
## the root is in hexadecimal format
var rlnInstance = createRLNInstance()
doAssert(rlnInstance.isOk)
var rln = rlnInstance.value
# create a Merkle tree
# create a Merkle tree
for i in 0..list.len-1:
var member_is_added = false
member_is_added = rln.insertMember(list[i])
doAssert(member_is_added)
doAssert(member_is_added)
let root = rln.getMerkleRoot().value().toHex
let root = rln.getMerkleRoot().value().toHex
return root
proc createMembershipList*(n: int): (seq[(string,string)], string) {.raises: [Defect, IOError].} =
proc createMembershipList*(n: int): (seq[(string, string)], string) {.raises: [
Defect, IOError].} =
## createMembershipList produces a sequence of membership key pairs in the form of (identity key, id commitment keys) in the hexadecimal format
## this proc also returns the root of a Merkle tree constructed out of the identity commitment keys of the generated list
## the output of this proc is used to initialize a static group keys (to test waku-rln-relay in the off-chain mode)
# initialize a Merkle tree
var rlnInstance = createRLNInstance()
if not rlnInstance.isOk:
return (@[], "")
var rln = rlnInstance.value
var output = newSeq[(string,string)]()
var output = newSeq[(string, string)]()
for i in 0..n-1:
# generate a key pair
let keypair = rln.membershipKeyGen()
doAssert(keypair.isSome())
let keyTuple = (keypair.get().idKey.toHex, keypair.get().idCommitment.toHex)
output.add(keyTuple)
@ -314,12 +330,14 @@ proc createMembershipList*(n: int): (seq[(string,string)], string) {.raises: [De
let inserted = rln.insertMember(keypair.get().idCommitment)
if not inserted:
return (@[], "")
let root = rln.getMerkleRoot().value.toHex
return (output, root)
proc rlnRelaySetUp*(rlnRelayMemIndex: MembershipIndex): (Option[seq[IDCommitment]],Option[MembershipKeyPair], Option[MembershipIndex]) {.raises:[Defect, ValueError].} =
proc rlnRelaySetUp*(rlnRelayMemIndex: MembershipIndex): (Option[seq[
IDCommitment]], Option[MembershipKeyPair], Option[
MembershipIndex]) {.raises: [Defect, ValueError].} =
let
# static group
groupKeys = STATIC_GROUP_KEYS
@ -328,31 +346,33 @@ proc rlnRelaySetUp*(rlnRelayMemIndex: MembershipIndex): (Option[seq[IDCommitment
debug "rln-relay membership index", rlnRelayMemIndex
# validate the user-supplied membership index
if rlnRelayMemIndex < MembershipIndex(0) or rlnRelayMemIndex >= MembershipIndex(groupSize):
if rlnRelayMemIndex < MembershipIndex(0) or rlnRelayMemIndex >=
MembershipIndex(groupSize):
error "wrong membership index"
return(none(seq[IDCommitment]), none(MembershipKeyPair), none(MembershipIndex))
# prepare the outputs from the static group keys
let
let
# create a sequence of MembershipKeyPairs from the group keys (group keys are in string format)
groupKeyPairs = groupKeys.toMembershipKeyPairs()
# extract id commitment keys
groupIDCommitments = groupKeyPairs.mapIt(it.idCommitment)
groupOpt= some(groupIDCommitments)
groupOpt = some(groupIDCommitments)
# user selected membership key pair
memKeyPairOpt = some(groupKeyPairs[rlnRelayMemIndex])
memIndexOpt= some(rlnRelayMemIndex)
memIndexOpt = some(rlnRelayMemIndex)
return (groupOpt, memKeyPairOpt, memIndexOpt)
proc hasDuplicate*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string] =
## returns true if there is another message in the `nullifierLog` of the `rlnPeer` with the same
proc hasDuplicate*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string] =
## returns true if there is another message in the `nullifierLog` of the `rlnPeer` with the same
## epoch and nullifier as `msg`'s epoch and nullifier but different Shamir secret shares
## otherwise, returns false
## emits an error string if `KeyError` occurs (never happens, it is just to avoid raising unnecessary `KeyError` exception )
# extract the proof metadata of the supplied `msg`
let proofMD = ProofMetadata(nullifier: msg.proof.nullifier, shareX: msg.proof.shareX, shareY: msg.proof.shareY)
let proofMD = ProofMetadata(nullifier: msg.proof.nullifier,
shareX: msg.proof.shareX, shareY: msg.proof.shareY)
# check if the epoch exists
if not rlnPeer.nullifierLog.hasKey(msg.proof.epoch):
@ -363,12 +383,14 @@ proc hasDuplicate*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string
return ok(false)
# check for a message with the same nullifier but different secret shares
let matched = rlnPeer.nullifierLog[msg.proof.epoch].filterIt((it.nullifier == proofMD.nullifier) and ((it.shareX != proofMD.shareX) or (it.shareY != proofMD.shareY)))
let matched = rlnPeer.nullifierLog[msg.proof.epoch].filterIt((
it.nullifier == proofMD.nullifier) and ((it.shareX != proofMD.shareX) or
(it.shareY != proofMD.shareY)))
if matched.len != 0:
# there is a duplicate
return ok(true)
# there is no duplicate
return ok(false)
@ -376,17 +398,18 @@ proc hasDuplicate*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string
return err("the epoch was not found")
proc updateLog*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string] =
## extracts the `ProofMetadata` of the supplied messages `msg` and
## extracts the `ProofMetadata` of the supplied messages `msg` and
## saves it in the `nullifierLog` of the `rlnPeer`
let proofMD = ProofMetadata(nullifier: msg.proof.nullifier, shareX: msg.proof.shareX, shareY: msg.proof.shareY)
debug "proof metadata", proofMD=proofMD
let proofMD = ProofMetadata(nullifier: msg.proof.nullifier,
shareX: msg.proof.shareX, shareY: msg.proof.shareY)
debug "proof metadata", proofMD = proofMD
# check if the epoch exists
if not rlnPeer.nullifierLog.hasKey(msg.proof.epoch):
rlnPeer.nullifierLog[msg.proof.epoch]= @[proofMD]
rlnPeer.nullifierLog[msg.proof.epoch] = @[proofMD]
return ok(true)
try:
# check if an identical record exists
if rlnPeer.nullifierLog[msg.proof.epoch].contains(proofMD):
@ -400,17 +423,17 @@ proc updateLog*(rlnPeer: WakuRLNRelay, msg: WakuMessage): Result[bool, string] =
proc toEpoch*(t: uint64): Epoch =
## converts `t` to `Epoch` in little-endian order
let bytes = toBytes(t, Endianness.littleEndian)
debug "bytes", bytes=bytes
debug "bytes", bytes = bytes
var epoch: Epoch
discard epoch.copyFrom(bytes)
return epoch
proc fromEpoch*(epoch: Epoch): uint64 =
## decodes bytes of `epoch` (in little-endian) to uint64
let t = fromBytesLE(uint64, array[32,byte](epoch))
let t = fromBytesLE(uint64, array[32, byte](epoch))
return t
proc calcEpoch*(t: float64): Epoch =
proc calcEpoch*(t: float64): Epoch =
## gets time `t` as `flaot64` with subseconds resolution in the fractional part
## and returns its corresponding rln `Epoch` value
let e = uint64(t/EPOCH_UNIT_SECONDS)
@ -420,25 +443,26 @@ proc getCurrentEpoch*(): Epoch =
## gets the current rln Epoch time
return calcEpoch(epochTime())
proc compare*(e1, e2: Epoch): int64 =
proc diff*(e1, e2: Epoch): int64 =
## returns the difference between the two rln `Epoch`s `e1` and `e2`
## i.e., e1 - e2
## i.e., e1 - e2
# convert epochs to their corresponding unsigned numerical values
let
let
epoch1 = fromEpoch(e1)
epoch2 = fromEpoch(e2)
return int64(epoch1) - int64(epoch2)
proc validateMessage*(rlnPeer: WakuRLNRelay, msg: WakuMessage, timeOption: Option[float64] = none(float64)): MessageValidationResult =
proc validateMessage*(rlnPeer: WakuRLNRelay, msg: WakuMessage,
timeOption: Option[float64] = none(float64)): MessageValidationResult =
## validate the supplied `msg` based on the waku-rln-relay routing protocol i.e.,
## the `msg`'s epoch is within MAX_EPOCH_GAP of the current epoch
## the `msg` has valid rate limit proof
## the `msg` does not violate the rate limit
## `timeOption` indicates Unix epoch time (fractional part holds sub-seconds)
## `timeOption` indicates Unix epoch time (fractional part holds sub-seconds)
## if `timeOption` is supplied, then the current epoch is calculated based on that
# checks if the `msg`'s epoch is far from the current epoch
# it corresponds to the validation of rln external nullifier
var epoch: Epoch
@ -448,77 +472,79 @@ proc validateMessage*(rlnPeer: WakuRLNRelay, msg: WakuMessage, timeOption: Optio
# get current rln epoch
epoch = getCurrentEpoch()
debug "current epoch", currentEpoch=fromEpoch(epoch)
let
debug "current epoch", currentEpoch = fromEpoch(epoch)
let
msgEpoch = msg.proof.epoch
# calculate the gaps
gap = compare(epoch, msgEpoch)
gap = diff(epoch, msgEpoch)
debug "message epoch", msgEpoch=fromEpoch(msgEpoch)
debug "message epoch", msgEpoch = fromEpoch(msgEpoch)
# validate the epoch
if abs(gap) >= MAX_EPOCH_GAP:
# message's epoch is too old or too ahead
# accept messages whose epoch is within +-MAX_EPOCH_GAP from the current epoch
debug "invalid message: epoch gap exceeds a threshold",gap=gap, payload=string.fromBytes(msg.payload)
debug "invalid message: epoch gap exceeds a threshold", gap = gap,
payload = string.fromBytes(msg.payload)
return MessageValidationResult.Invalid
# verify the proof
let
let
contentTopicBytes = msg.contentTopic.toBytes
input = concat(msg.payload, contentTopicBytes)
if not rlnPeer.rlnInstance.proofVerify(input, msg.proof):
# invalid proof
debug "invalid message: invalid proof", payload=string.fromBytes(msg.payload)
debug "invalid message: invalid proof", payload = string.fromBytes(msg.payload)
return MessageValidationResult.Invalid
# check if double messaging has happened
let hasDup = rlnPeer.hasDuplicate(msg)
if hasDup.isOk and hasDup.value == true:
debug "invalid message: message is a spam", payload=string.fromBytes(msg.payload)
debug "invalid message: message is a spam", payload = string.fromBytes(msg.payload)
return MessageValidationResult.Spam
# insert the message to the log
# insert the message to the log
# the result of `updateLog` is discarded because message insertion is guaranteed by the implementation i.e.,
# it will never error out
discard rlnPeer.updateLog(msg)
debug "message is valid", payload=string.fromBytes(msg.payload)
debug "message is valid", payload = string.fromBytes(msg.payload)
return MessageValidationResult.Valid
proc toRLNSignal*(wakumessage: WakuMessage): seq[byte] =
## it is a utility proc that prepares the `data` parameter of the proof generation procedure i.e., `proofGen` that resides in the current module
## it extracts the `contentTopic` and the `payload` of the supplied `wakumessage` and serializes them into a byte sequence
let
let
contentTopicBytes = wakumessage.contentTopic.toBytes
output = concat(wakumessage.payload, contentTopicBytes)
return output
proc appendRLNProof*(rlnPeer: WakuRLNRelay, msg: var WakuMessage, senderEpochTime: float64): bool =
proc appendRLNProof*(rlnPeer: WakuRLNRelay, msg: var WakuMessage,
senderEpochTime: float64): bool =
## returns true if it can create and append a `RateLimitProof` to the supplied `msg`
## returns false otherwise
## `senderEpochTime` indicates the number of seconds passed since Unix epoch. The fractional part holds sub-seconds.
## The `epoch` field of `RateLimitProof` is derived from the provided `senderEpochTime` (using `calcEpoch()`)
let input = msg.toRLNSignal()
var proof: RateLimitProofResult = proofGen(rlnInstance = rlnPeer.rlnInstance, data = input,
memKeys = rlnPeer.membershipKeyPair,
memIndex = rlnPeer.membershipIndex,
memKeys = rlnPeer.membershipKeyPair,
memIndex = rlnPeer.membershipIndex,
epoch = calcEpoch(senderEpochTime))
if proof.isErr:
return false
msg.proof = proof.value
return true
proc addAll*(rlnInstance: RLN[Bn256], list: seq[IDCommitment]): bool =
proc addAll*(rlnInstance: RLN[Bn256], list: seq[IDCommitment]): bool =
# add members to the Merkle tree of the `rlnInstance`
for i in 0..list.len-1:
let member = list[i]
let member_is_added = rlnInstance.insertMember(member)
if not member_is_added:
return false
return true
return true