refactor(noise): refactor and add documentation

This commit is contained in:
s1fr0 2022-04-08 19:04:58 +02:00
parent d4402d0920
commit 3f20d23028
No known key found for this signature in database
GPG Key ID: 2C041D60117BFF46
1 changed files with 372 additions and 212 deletions

View File

@ -7,7 +7,7 @@
{.push raises: [Defect].}
import std/[oids, strformat, options, math, tables]
import std/[oids, options, math, tables]
import chronos
import chronicles
import bearssl
@ -35,8 +35,14 @@ const
NonceMax = uint64.high - 1
type
#################################
# Elliptic Curve arithemtic
#################################
# Default underlying elliptic curve arithmetic (useful for switching to multiple ECs)
# Current default is Curve25519
EllipticCurve = Curve25519
EllipticCurveKey = Curve25519Key
# An EllipticCurveKey (public, private) key pair
@ -44,6 +50,10 @@ type
privateKey: EllipticCurveKey
publicKey: EllipticCurveKey
#################################
# Noise Public Keys
#################################
# A Noise public key is a public key exchanged during Noise handshakes (no private part)
# This follows https://rfc.vac.dev/spec/35/#public-keys-serialization
# pk contains the X coordinate of the public key, if unencrypted (this implies flag = 0)
@ -53,6 +63,10 @@ type
flag: uint8
pk: seq[byte]
#################################
# ChaChaPoly Encryption
#################################
# A ChaChaPoly ciphertext (data) + authorization tag (tag)
ChaChaPolyCiphertext* = object
data*: seq[byte]
@ -64,6 +78,94 @@ type
nonce: ChaChaPolyNonce
ad: seq[byte]
#################################
# Noise handshake patterns
#################################
# The Noise tokens appearing in Noise (pre)message patterns
# as in http://www.noiseprotocol.org/noise.html#handshake-pattern-basics
NoiseTokens* = enum
T_e = "e"
T_s = "s"
T_es = "es"
T_ee = "ee"
T_se = "se"
T_ss = "se"
T_psk = "psk"
# The direction of a (pre)message pattern in canonical form (i.e. Alice-initiated form)
# as in http://www.noiseprotocol.org/noise.html#alice-and-bob
MessageDirection* = enum
D_r = "->"
D_l = "<-"
# The pre message pattern consisting of a message direction and some Noise tokens, if any.
# (if non empty, only tokens e and s are allowed: http://www.noiseprotocol.org/noise.html#handshake-pattern-basics)
PreMessagePattern* = object
direction: MessageDirection
tokens: seq[NoiseTokens]
# The message pattern consisting of a message direction and some Noise tokens
# All Noise tokens are allowed
MessagePattern* = object
direction: MessageDirection
tokens: seq[NoiseTokens]
# The handshake pattern object. It stores the handshake protocol name, the handshake pre message patterns and the handshake message patterns
HandshakePattern* = object
name*: string
preMessagePatterns*: seq[PreMessagePattern]
messagePatterns*: seq[MessagePattern]
#################################
# Noise state machine
#################################
# The Cipher State as in https://noiseprotocol.org/noise.html#the-cipherstate-object
# Contains an encryption key k and a nonce n (used in Noise as a counter)
CipherState* = object
k: ChaChaPolyKey
n: uint64
# The Symmetric State as in https://noiseprotocol.org/noise.html#the-symmetricstate-object
# Contains a Cipher State cs, the chaining key ck and the handshake hash value h
SymmetricState* = object
cs: CipherState
ck: ChaChaPolyKey
h: MDigest[256]
# The Handshake State as in https://noiseprotocol.org/noise.html#the-handshakestate-object
# Contains
# - the local and remote ephemeral/static keys e,s,re,rs (if any)
# - the initiator flag (true if the user creating the state is the handshake initiator, false otherwise)
# - the handshakePattern (containing the handshake protocol name, and (pre)message patterns)
# This object is futher extended from specifications by storing:
# - a message pattern index msgPatternIdx indicating the next handshake message pattern to process
# - the user's preshared psk, if any
HandshakeState = object
s: KeyPair
e: KeyPair
rs: EllipticCurveKey
re: EllipticCurveKey
ss: SymmetricState
initiator: bool
handshakePattern: HandshakePattern
msgPatternIdx: uint8
psk: seq[byte]
# When a handshake is complete, the HandhshakeResult will contain the two
# Cipher States used to encrypt/decrypt outbound/inbound messages
# The recipient static key rs and handshake hash values h are stored as well
HandshakeResult = object
cs1: CipherState
cs2: CipherState
rs: EllipticCurveKey
h: MDigest[256] #The handshake state for channel binding
#################################
# Waku Payload V2
#################################
# PayloadV2 defines an object for Waku payloads with version 2 as in
# https://rfc.vac.dev/spec/35/#public-keys-serialization
# It contains a protocol ID field, the handshake message (for Noise handshakes) and
@ -73,64 +175,10 @@ type
handshakeMessage: seq[NoisePublicKey]
transportMessage: seq[byte]
#Noise Handshakes
NoiseTokens* = enum
T_e = "e"
T_s = "s"
T_es = "es"
T_ee = "ee"
T_se = "se"
T_ss = "se"
T_psk = "psk"
T_none = ""
MessageDirection* = enum
D_r = "->"
D_l = "<-"
D_none = ""
HandshakePattern* = object
name*: string
pre_message_patterns*: seq[(MessageDirection, seq[NoiseTokens])]
message_patterns*: seq[(MessageDirection, seq[NoiseTokens])]
#Noise states
# https://noiseprotocol.org/noise.html#the-cipherstate-object
CipherState* = object
k: ChaChaPolyKey
n: uint64
# https://noiseprotocol.org/noise.html#the-symmetricstate-object
SymmetricState* = object
cs: CipherState
ck: ChaChaPolyKey
h: MDigest[256]
# https://noiseprotocol.org/noise.html#the-handshakestate-object
HandshakeState = object
s: KeyPair
e: KeyPair
rs: Curve25519Key
re: Curve25519Key
ss: SymmetricState
initiator: bool
handshake_pattern: HandshakePattern
msg_pattern_idx: uint8
psk: seq[byte]
HandshakeResult = object
cs1: CipherState
cs2: CipherState
rs: Curve25519Key
h: MDigest[256] #The handshake state for channel binding
NoiseState* = object
hs: HandshakeState
hr: HandshakeResult
#################################
# Some useful error types
#################################
NoiseError* = object of LPError
NoiseHandshakeError* = object of NoiseError
NoiseEmptyChaChaPolyInput* = object of NoiseError
@ -139,44 +187,50 @@ type
NoisePublicKeyError* = object of NoiseError
NoiseMalformedHandshake* = object of NoiseError
# Supported Noise Handshake Patterns
#################################
# Constants (supported protocols)
#################################
const
EmptyMessagePattern = @[(D_none, @[T_none])]
# The empty pre message patterns
EmptyPreMessagePattern: seq[PreMessagePattern] = @[]
# Supported Noise handshake patterns as defined in https://rfc.vac.dev/spec/35/#specification
NoiseHandshakePatterns* = {
"K1K1": HandshakePattern(name: "Noise_K1K1_25519_ChaChaPoly_SHA256",
pre_message_patterns: @[(D_r, @[T_s]),
(D_l, @[T_s])],
message_patterns: @[(D_r, @[T_e]),
(D_l, @[T_e, T_ee, T_es]),
(D_r, @[T_se])]
preMessagePatterns: @[PreMessagePattern(direction: D_r, tokens: @[T_s]),
PreMessagePattern(direction: D_l, tokens: @[T_s])],
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_es]),
MessagePattern(direction: D_r, tokens: @[T_se])]
),
"XK1": HandshakePattern(name: "Noise_XK1_25519_ChaChaPoly_SHA256",
pre_message_patterns: @[(D_l, @[T_s])],
message_patterns: @[(D_r, @[T_e]),
(D_l, @[T_e, T_ee, T_es]),
(D_r, @[T_s, T_se])]
preMessagePatterns: @[PreMessagePattern(direction: D_l, tokens: @[T_s])],
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_es]),
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
),
"XX": HandshakePattern(name: "Noise_XX_25519_ChaChaPoly_SHA256",
pre_message_patterns: EmptyMessagePattern,
message_patterns: @[(D_r, @[T_e]),
(D_l, @[T_e, T_ee, T_s, T_es]),
(D_r, @[T_s, T_se])]
preMessagePatterns: EmptyPreMessagePattern,
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_e]),
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_s, T_es]),
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
),
"XXpsk0": HandshakePattern(name: "Noise_XXpsk0_25519_ChaChaPoly_SHA256",
pre_message_patterns: EmptyMessagePattern,
message_patterns: @[(D_r, @[T_psk, T_e]),
(D_l, @[T_e, T_ee, T_s, T_es]),
(D_r, @[T_s, T_se])]
preMessagePatterns: EmptyPreMessagePattern,
messagePatterns: @[ MessagePattern(direction: D_r, tokens: @[T_psk, T_e]),
MessagePattern(direction: D_l, tokens: @[T_e, T_ee, T_s, T_es]),
MessagePattern(direction: D_r, tokens: @[T_s, T_se])]
)
}.toTable()
# Supported Protocol ID for PayloadV2 objects
# Protocol IDs are defined according to https://rfc.vac.dev/spec/35/#specification
PayloadV2ProtocolIDs* = {
"": 0.uint8,
@ -188,9 +242,12 @@ const
}.toTable()
#################################################################
#################################
# Utilities
#################################
# Generates random byte sequences of given size
proc randomSeqByte*(rng: var BrHmacDrbgContext, size: int): seq[byte] =
@ -205,18 +262,18 @@ proc genKeyPair*(rng: var BrHmacDrbgContext): KeyPair =
keyPair.publicKey = keyPair.privateKey.public()
return keyPair
#Printing Handshake Patterns
# Prints Handshake Patterns using Noise pattern layout
proc print*(self: HandshakePattern)
{.raises: [IOError].}=
{.raises: [IOError, NoiseMalformedHandshake].}=
try:
if self.name != "":
echo self.name, ":"
#We iterate over pre message patterns, if any
if self.pre_message_patterns != EmptyMessagePattern:
for pattern in self.pre_message_patterns:
stdout.write " ", pattern[0]
if self.preMessagePatterns != EmptyPreMessagePattern:
for pattern in self.pre_messagePatterns:
stdout.write " ", pattern.direction
var first = true
for token in pattern[1]:
for token in pattern.tokens:
if first:
stdout.write " ", token
first = false
@ -227,10 +284,10 @@ proc print*(self: HandshakePattern)
stdout.write " ...\n"
stdout.flushFile()
#We iterate over message patterns
for pattern in self.message_patterns:
stdout.write " ", pattern[0]
for pattern in self.messagePatterns:
stdout.write " ", pattern.direction
var first = true
for token in pattern[1]:
for token in pattern.tokens:
if first:
stdout.write " ", token
first = false
@ -239,142 +296,242 @@ proc print*(self: HandshakePattern)
stdout.write "\n"
stdout.flushFile()
except:
echo "HandshakePattern malformed"
raise newException(NoiseMalformedHandshake, "HandshakePattern malformed")
# Hashes a Noise protocol name using SHA256
proc hashProtocol(protocolName: string): MDigest[256] =
proc hashProtocol(name: string): MDigest[256] =
# The output hash value
var hash: MDigest[256]
# From Noise specification: Section 5.2
# http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# If protocol_name is less than or equal to HASHLEN bytes in length,
# sets h equal to protocol_name with zero bytes appended to make HASHLEN bytes.
# Otherwise sets h = HASH(protocol_name).
if name.len <= 32:
result.data[0..name.high] = name.toBytes
if protocolName.len <= 32:
hash.data[0..protocolName.high] = protocolName.toBytes
else:
result = sha256.digest(name)
hash = sha256.digest(protocolName)
proc dh(priv: Curve25519Key, pub: Curve25519Key): Curve25519Key =
result = pub
Curve25519.mul(result, priv)
return hash
# Cipherstate
# Performs a Diffie-Hellman operation between two elliptic curve keys (one private, one public)
proc dh(private: EllipticCurveKey, public: EllipticCurveKey): EllipticCurveKey =
proc hasKey(cs: CipherState): bool =
cs.k != EmptyKey
# The output result of the Diffie-Hellman operation
var output: EllipticCurveKey
proc encrypt(
state: var CipherState,
data: var openArray[byte],
ad: openArray[byte]): ChaChaPolyTag
{.noinit, raises: [Defect, NoiseNonceMaxError].} =
var nonce: ChaChaPolyNonce
nonce[4..<12] = toBytesLE(state.n)
ChaChaPoly.encrypt(state.k, nonce, result, data, ad)
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
proc encryptWithAd(state: var CipherState, ad, data: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseNonceMaxError].} =
result = newSeqOfCap[byte](data.len + sizeof(ChaChaPolyTag))
result.add(data)
let tag = encrypt(state, result, ad)
result.add(tag)
trace "encryptWithAd",
tag = byteutils.toHex(tag), data = result.shortLog, nonce = state.n - 1
proc decryptWithAd(state: var CipherState, ad, data: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
var
tagIn = data.toOpenArray(data.len - ChaChaPolyTag.len, data.high).intoChaChaPolyTag
tagOut: ChaChaPolyTag
nonce: ChaChaPolyNonce
nonce[4..<12] = toBytesLE(state.n)
result = data[0..(data.high - ChaChaPolyTag.len)]
ChaChaPoly.decrypt(state.k, nonce, tagOut, result, ad)
trace "decryptWithAd", tagIn = tagIn.shortLog, tagOut = tagOut.shortLog, nonce = state.n
if tagIn != tagOut:
debug "decryptWithAd failed", data = shortLog(data)
raise newException(NoiseDecryptTagError, "decryptWithAd failed tag authentication.")
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
# Symmetricstate
proc init*(_: type[SymmetricState], hs_pattern: HandshakePattern): SymmetricState =
result.h = hs_pattern.name.hashProtocol
result.ck = result.h.data.intoChaChaPolyKey
result.cs = CipherState(k: EmptyKey)
proc mixKey(ss: var SymmetricState, ikm: ChaChaPolyKey) =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.cs = CipherState(k: temp_keys[1])
trace "mixKey", key = ss.cs.k.shortLog
proc mixHash(ss: var SymmetricState, data: openArray[byte]) =
var ctx: sha256
ctx.init()
ctx.update(ss.h.data)
ctx.update(data)
ss.h = ctx.finish()
trace "mixHash", hash = ss.h.data.shortLog
# We might use this for other handshake patterns/tokens
proc mixKeyAndHash(ss: var SymmetricState, ikm: openArray[byte]) {.used.} =
var
temp_keys: array[3, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.mixHash(temp_keys[1])
ss.cs = CipherState(k: temp_keys[2])
proc encryptAndHash(ss: var SymmetricState, data: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseNonceMaxError].} =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey:
result = ss.cs.encryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(result)
proc decryptAndHash(ss: var SymmetricState, data: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey and data.len > ChaChaPolyTag.len:
result = ss.cs.decryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(data)
proc split(ss: var SymmetricState): tuple[cs1, cs2: CipherState] =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, [], [], temp_keys)
return (CipherState(k: temp_keys[0]), CipherState(k: temp_keys[1]))
# Handshake state
proc init*(_: type[HandshakeState], hs_pattern: HandshakePattern, psk: seq[byte] = @[]): HandshakeState =
# set to true only if startHandshake is called over the handshake state
result.initiator = false
result.handshake_pattern = hs_pattern
result.psk = psk
result.ss = SymmetricState.init(hs_pattern)
# Since the EC multiplication writes the result to the input, we copy the input to the output variable
output = public
# We execute the DH operation
EllipticCurve.mul(output, private)
return output
#################################################################
# Noise state machine primitives
#################################
# Cipher State Primitives
#################################
# Checks if a Cipher State has an encryption key set
proc hasKey(cs: CipherState): bool =
return (cs.k != EmptyKey)
# Encrypts a plaintext using key material in a Noise Cipher State
# The CipherState is updated increasing the nonce (used as a counter in Noise) by one
proc encryptWithAd(state: var CipherState, ad, plaintext: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseNonceMaxError].} =
# The output is the concatenation of the ciphertext and authorization tag
# We define its length accordingly
var ciphertext = newSeqOfCap[byte](plaintext.len + sizeof(ChaChaPolyTag))
# Since ChaChaPoly encryption primitive overwrites the input with the output,
# we copy the plaintext in the output ciphertext variable and we pass it to encryption
ciphertext.add(plaintext)
# The nonce is read from the input CipherState
# By Noise specification the nonce is 4 bytes long out of the 12 bytes supported by ChaChaPoly
var nonce: ChaChaPolyNonce
nonce[4..<12] = toBytesLE(state.n)
# We perform encryption and we store the authorization tag
var authorizationTag: ChaChaPolyTag
ChaChaPoly.encrypt(state.k, nonce, authorizationTag, ciphertext, ad)
# We append the authorization tag to ciphertext
ciphertext.add(authorizationTag)
# We increase the Cipher state nonce
inc state.n
# If the nonce is greater than the maximum allowed nonce, we raise an exception
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
trace "encryptWithAd", tag = byteutils.toHex(tag), data = ciphertext, nonce = state.n - 1
return ciphertext
# Decrypts a ciphertext using key material in a Noise Cipher State
# The CipherState is updated increasing the nonce (used as a counter in Noise) by one
proc decryptWithAd(state: var CipherState, ad, ciphertext: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
# We read the authorization appendend at the end of a ciphertext
let inputAuthorizationTag = ciphertext.toOpenArray(ciphertext.len - ChaChaPolyTag.len, ciphertext.high).intoChaChaPolyTag
var
authorizationTag: ChaChaPolyTag
nonce: ChaChaPolyNonce
# The nonce is read from the input CipherState
# By Noise specification the nonce is 4 bytes long out of the 12 bytes supported by ChaChaPoly
nonce[4..<12] = toBytesLE(state.n)
# Since ChaChaPoly decryption primitive overwrites the input with the output,
# we copy the ciphertext (authorization tag excluded) in the output plaintext variable and we pass it to decryption
var plaintext = ciphertext[0..(ciphertext.high - ChaChaPolyTag.len)]
ChaChaPoly.decrypt(state.k, nonce, authorizationTag, plaintext, ad)
# We check if the input authorization tag matches the decryption authorization tag
if inputAuthorizationTag != authorizationTag:
debug "decryptWithAd failed", ciphertext = ciphertext
raise newException(NoiseDecryptTagError, "decryptWithAd failed tag authentication.")
# We increase the Cipher state nonce
inc state.n
# If the nonce is greater than the maximum allowed nonce, we raise an exception
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
trace "decryptWithAd", inputAuthorizationTag = inputAuthorizationTag, authorizationTag = authorizationTag, nonce = state.n
return plaintext
#################################
# Symmetric State primitives
#################################
# Initializes a Symmetric State
proc init*(_: type[SymmetricState], hsPattern: HandshakePattern): SymmetricState =
var ss: SymmetricState
# We compute the hash of the protocol name
ss.h = hsPattern.name.hashProtocol
# We initialize the chaining key ck
ss.ck = result.h.data.intoChaChaPolyKey
# We initialize the Cipher state
ss.cs = CipherState(k: EmptyKey)
return ss
# MixKey as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Updates a Symmetric state chaining key and symmetric state
proc mixKey(ss: var SymmetricState, ikm: ChaChaPolyKey) =
# We derive two keys using HKDF
var tempKeys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], tempKeys)
# We update ck and the Cipher state's key k using the output of HDKF
ss.ck = tempKeys[0]
ss.cs = CipherState(k: tempKeys[1])
trace "mixKey", ck = ss.ck, k = ss.cs.k
# MixHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Hashes data into a Symmetric State's handshake hash value h
proc mixHash(ss: var SymmetricState, data: openArray[byte]) =
# We prepare the hash context
var ctx: sha256
ctx.init()
# We add the previous handshake hash
ctx.update(ss.h.data)
# We append the input data
ctx.update(data)
# We hash and store the result in the Symmetric State's handshake hash value
ss.h = ctx.finish()
trace "mixHash", hash = ss.h.data
# mixKeyAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Combines MixKey and MixHash
proc mixKeyAndHash(ss: var SymmetricState, inputKeyMaterial: openArray[byte]) {.used.} =
var tempKeys: array[3, ChaChaPolyKey]
# Derives 3 keys using HKDF, the chaining key and the input key material
sha256.hkdf(ss.ck, inputKeyMaterial, [], tempKeys)
# Sets the chaining key
ss.ck = tempKeys[0]
# Updates the handshake hash value
ss.mixHash(tempKeys[1])
# Updates the Cipher state's key
# Note for later support of 512 bits hash functions: "If HASHLEN is 64, then truncates tempKeys[2] to 32 bytes."
ss.cs = CipherState(k: tempKeys[2])
# EncryptAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Combines encryptWithAd and mixHash
proc encryptAndHash(ss: var SymmetricState, plaintext: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseNonceMaxError].} =
# The output ciphertext
var ciphertext: seq[byte]
# If an encryption key is set in the Symmetric state, we proceed with encryption using the handshake hash value as associated data
if ss.cs.hasKey:
ciphertext = ss.cs.encryptWithAd(ss.h.data, plaintext)
# According to specification, if no key is set return the plaintext
else:
ciphertext = @plaintext
# We call mixHash over the result
ss.mixHash(ciphertext)
return ciphertext
# DecryptAndHash as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Combines decryptWithAd and mixHash
proc decryptAndHash(ss: var SymmetricState, ciphertext: openArray[byte]): seq[byte]
{.raises: [Defect, NoiseDecryptTagError, NoiseNonceMaxError].} =
# The output plaintext
var plaintext: seq[byte]
# If an encryption key is set in the Symmetric state, we proceed with decryption using the handshake hash value as associated data
# Note that the ciphertext must contains an authorization tag, so its length should be greater or equal (in case of empty plaintext) the latter
if ss.cs.hasKey and ciphertext.len >= ChaChaPolyTag.len:
plaintext = ss.cs.decryptWithAd(ss.h.data, ciphertext)
# According to specification, if no key is set return the plaintext
else:
plaintext = @ciphertext
# According to specification, the ciphertext enters mixHash (and not the plaintext)
ss.mixHash(ciphertext)
return plaintext
# Split as per Noise specification http://www.noiseprotocol.org/noise.html#the-symmetricstate-object
# Once a handshake is complete, returns two Cipher States to encrypt/decrypt outbound/inbound messages
proc split(ss: var SymmetricState): tuple[cs1, cs2: CipherState] =
# Derives 2 keys using HKDF and the chaining key
var tempKeys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, [], [], tempKeys)
# Returns a tuple of two Cipher States initialized with the derived keys
return (CipherState(k: tempKeys[0]), CipherState(k: tempKeys[1]))
#################################
# Handshake State primitives
#################################
# Initializes a Handshake State
proc init*(_: type[HandshakeState], hsPattern: HandshakePattern, psk: seq[byte] = @[]): HandshakeState =
# The output Handshake State
var hs: HandshakeState
# By default the Handshake State initiator flag is set to false
# Will be set to true when the user associated to the handshake state starts an handshake
hs.initiator = false
# We copy the information on the handshake pattern for which the state is initialized (protocol name, handshake pattern, psk)
hs.handshakePattern = hsPattern
hs.psk = psk
# We initialize the Symmetric State
hs.ss = SymmetricState.init(hsPattern)
return hs
#################################################################
#################################
# ChaChaPoly Symmetric Cipher
#################################
# ChaChaPoly encryption
# It takes a Cipher State (with key, nonce, and associated data) and encrypts a plaintext
@ -437,7 +594,9 @@ proc randomChaChaPolyCipherState*(rng: var BrHmacDrbgContext): ChaChaPolyCipherS
#################################################################
#################################
# Noise Public keys
#################################
# Checks equality between two Noise public keys
proc `==`(k1, k2: NoisePublicKey): bool =
@ -530,7 +689,9 @@ proc decryptNoisePublicKey*(cs: ChaChaPolyCipherState, noisePublicKey: NoisePubl
#################################################################
#################################
# Payload encoding/decoding procedures
#################################
# Checks equality between two PayloadsV2 objects
proc `==`(p1, p2: PayloadV2): bool =
@ -606,7 +767,6 @@ proc serializePayloadV2*(self: PayloadV2): Result[seq[byte], cstring] =
return ok(payload)
# Deserializes a byte sequence to a PayloadV2 object according to https://rfc.vac.dev/spec/35/.
# The input serialized payload concatenates the output PayloadV2 object fields as
# payload = ( protocolId || serializedHandshakeMessageLen || serializedHandshakeMessage || transportMessageLen || transportMessage)
@ -648,7 +808,7 @@ proc deserializePayloadV2*(payload: seq[byte]): Result[PayloadV2, cstring]
# If the key is unencrypted, we only read the X coordinate of the EC public key and we deserialize into a Noise Public Key
if flag == 0:
pkLen = 1 + EllipticCurveKey.len
handshake_message.add intoNoisePublicKey(payload[i..<i+pkLen])
handshakeMessage.add intoNoisePublicKey(payload[i..<i+pkLen])
i += pkLen
written += pkLen
# If the key is encrypted, we only read the encrypted X coordinate and the authorization tag, and we deserialize into a Noise Public Key