mirror of
https://github.com/vacp2p/zerokit.git
synced 2025-02-03 10:14:02 +00:00
d3d85c3e3c
* add function for empty leaves * fix from linter * fix rebase * update test in utils * fix * fix(trees): inconsistencies in override_range (#250) * fix tests --------- Co-authored-by: Aaryamann Challani <43716372+rymnc@users.noreply.github.com>
339 lines
12 KiB
Rust
339 lines
12 KiB
Rust
// Tests adapted from https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs
|
|
#[cfg(test)]
|
|
pub mod test {
|
|
use hex_literal::hex;
|
|
use std::{fmt::Display, str::FromStr};
|
|
use tiny_keccak::{Hasher as _, Keccak};
|
|
use zerokit_utils::{
|
|
FullMerkleConfig, FullMerkleTree, Hasher, OptimalMerkleConfig, OptimalMerkleTree,
|
|
ZerokitMerkleProof, ZerokitMerkleTree,
|
|
};
|
|
#[derive(Clone, Copy, Eq, PartialEq)]
|
|
struct Keccak256;
|
|
|
|
#[derive(Clone, Copy, Eq, PartialEq, Debug, Default)]
|
|
struct TestFr([u8; 32]);
|
|
|
|
impl Hasher for Keccak256 {
|
|
type Fr = TestFr;
|
|
|
|
fn default_leaf() -> Self::Fr {
|
|
TestFr([0; 32])
|
|
}
|
|
|
|
fn hash(inputs: &[Self::Fr]) -> Self::Fr {
|
|
let mut output = [0; 32];
|
|
let mut hasher = Keccak::v256();
|
|
for element in inputs {
|
|
hasher.update(element.0.as_slice());
|
|
}
|
|
hasher.finalize(&mut output);
|
|
TestFr(output)
|
|
}
|
|
}
|
|
|
|
impl Display for TestFr {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "{}", hex::encode(self.0.as_slice()))
|
|
}
|
|
}
|
|
|
|
impl FromStr for TestFr {
|
|
type Err = std::string::FromUtf8Error;
|
|
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
Ok(TestFr(s.as_bytes().try_into().unwrap()))
|
|
}
|
|
}
|
|
|
|
impl From<u32> for TestFr {
|
|
fn from(value: u32) -> Self {
|
|
let mut bytes: Vec<u8> = vec![0; 28];
|
|
bytes.extend_from_slice(&value.to_be_bytes());
|
|
TestFr(bytes.as_slice().try_into().unwrap())
|
|
}
|
|
}
|
|
|
|
const DEFAULT_DEPTH: usize = 2;
|
|
|
|
fn default_full_merkle_tree(depth: usize) -> FullMerkleTree<Keccak256> {
|
|
FullMerkleTree::<Keccak256>::new(depth, TestFr([0; 32]), FullMerkleConfig::default())
|
|
.unwrap()
|
|
}
|
|
|
|
fn default_optimal_merkle_tree(depth: usize) -> OptimalMerkleTree<Keccak256> {
|
|
OptimalMerkleTree::<Keccak256>::new(depth, TestFr([0; 32]), OptimalMerkleConfig::default())
|
|
.unwrap()
|
|
}
|
|
|
|
#[test]
|
|
fn test_root() {
|
|
let default_tree_root = TestFr(hex!(
|
|
"b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30"
|
|
));
|
|
|
|
let roots = [
|
|
hex!("c1ba1812ff680ce84c1d5b4f1087eeb08147a4d510f3496b2849df3a73f5af95"),
|
|
hex!("893760ec5b5bee236f29e85aef64f17139c3c1b7ff24ce64eb6315fca0f2485b"),
|
|
hex!("222ff5e0b5877792c2bc1670e2ccd0c2c97cd7bb1672a57d598db05092d3d72c"),
|
|
hex!("a9bb8c3f1f12e9aa903a50c47f314b57610a3ab32f2d463293f58836def38d36"),
|
|
]
|
|
.map(TestFr);
|
|
|
|
let nof_leaves = 4;
|
|
let leaves: Vec<TestFr> = (1..=nof_leaves as u32).map(TestFr::from).collect();
|
|
|
|
let mut tree = default_full_merkle_tree(DEFAULT_DEPTH);
|
|
assert_eq!(tree.root(), default_tree_root);
|
|
for i in 0..nof_leaves {
|
|
tree.set(i, leaves[i]).unwrap();
|
|
assert_eq!(tree.root(), roots[i]);
|
|
}
|
|
|
|
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
|
|
assert_eq!(tree.root(), default_tree_root);
|
|
for i in 0..nof_leaves {
|
|
tree.set(i, leaves[i]).unwrap();
|
|
assert_eq!(tree.root(), roots[i]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_get_empty_leaves_indices() {
|
|
let depth = 4;
|
|
let nof_leaves: usize = 1 << (depth - 1);
|
|
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
|
|
let leaves_2: Vec<TestFr> = (0u32..2).map(TestFr::from).collect();
|
|
let leaves_4: Vec<TestFr> = (0u32..4).map(TestFr::from).collect();
|
|
|
|
let mut tree_full = default_full_merkle_tree(depth);
|
|
let _ = tree_full.set_range(0, leaves.clone());
|
|
assert!(tree_full.get_empty_leaves_indices().is_empty());
|
|
|
|
let mut vec_idxs = Vec::new();
|
|
for i in 0..nof_leaves {
|
|
vec_idxs.push(i);
|
|
let _ = tree_full.delete(i);
|
|
assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs);
|
|
}
|
|
|
|
for i in (0..nof_leaves).rev() {
|
|
vec_idxs.pop();
|
|
let _ = tree_full.set(i, leaves[i]);
|
|
assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs);
|
|
}
|
|
|
|
// Check situation when the number of items to insert is less than the number of items to delete
|
|
tree_full
|
|
.override_range(0, leaves_2.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
|
|
// check if the indexes for write and delete are the same
|
|
tree_full
|
|
.override_range(0, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_full.get_empty_leaves_indices(), vec![]);
|
|
|
|
// check if indexes for deletion are before indexes for overwriting
|
|
tree_full
|
|
.override_range(4, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1, 2, 3]);
|
|
|
|
// check if the indices for write and delete do not overlap completely
|
|
tree_full
|
|
.override_range(2, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1]);
|
|
|
|
//// Optimal Merkle Tree Trest
|
|
|
|
let mut tree_opt = default_optimal_merkle_tree(depth);
|
|
let _ = tree_opt.set_range(0, leaves.clone());
|
|
assert!(tree_opt.get_empty_leaves_indices().is_empty());
|
|
|
|
let mut vec_idxs = Vec::new();
|
|
for i in 0..nof_leaves {
|
|
vec_idxs.push(i);
|
|
let _ = tree_opt.delete(i);
|
|
assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs);
|
|
}
|
|
for i in (0..nof_leaves).rev() {
|
|
vec_idxs.pop();
|
|
let _ = tree_opt.set(i, leaves[i]);
|
|
assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs);
|
|
}
|
|
|
|
// Check situation when the number of items to insert is less than the number of items to delete
|
|
tree_opt
|
|
.override_range(0, leaves_2.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
|
|
// check if the indexes for write and delete are the same
|
|
tree_opt
|
|
.override_range(0, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![]);
|
|
|
|
// check if indexes for deletion are before indexes for overwriting
|
|
tree_opt
|
|
.override_range(4, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1, 2, 3]);
|
|
|
|
// check if the indices for write and delete do not overlap completely
|
|
tree_opt
|
|
.override_range(2, leaves_4.clone(), [0, 1, 2, 3])
|
|
.unwrap();
|
|
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subtree_root() {
|
|
let depth = 3;
|
|
let nof_leaves: usize = 6;
|
|
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
|
|
|
|
let mut tree_full = default_optimal_merkle_tree(depth);
|
|
let _ = tree_full.set_range(0, leaves.iter().cloned());
|
|
|
|
for i in 0..nof_leaves {
|
|
// check leaves
|
|
assert_eq!(
|
|
tree_full.get(i).unwrap(),
|
|
tree_full.get_subtree_root(depth, i).unwrap()
|
|
);
|
|
|
|
// check root
|
|
assert_eq!(tree_full.root(), tree_full.get_subtree_root(0, i).unwrap());
|
|
}
|
|
|
|
// check intermediate nodes
|
|
for n in (1..=depth).rev() {
|
|
for i in (0..(1 << n)).step_by(2) {
|
|
let idx_l = i * (1 << (depth - n));
|
|
let idx_r = (i + 1) * (1 << (depth - n));
|
|
let idx_sr = idx_l;
|
|
|
|
let prev_l = tree_full.get_subtree_root(n, idx_l).unwrap();
|
|
let prev_r = tree_full.get_subtree_root(n, idx_r).unwrap();
|
|
let subroot = tree_full.get_subtree_root(n - 1, idx_sr).unwrap();
|
|
|
|
// check intermediate nodes
|
|
assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot);
|
|
}
|
|
}
|
|
|
|
let mut tree_opt = default_full_merkle_tree(depth);
|
|
let _ = tree_opt.set_range(0, leaves.iter().cloned());
|
|
|
|
for i in 0..nof_leaves {
|
|
// check leaves
|
|
assert_eq!(
|
|
tree_opt.get(i).unwrap(),
|
|
tree_opt.get_subtree_root(depth, i).unwrap()
|
|
);
|
|
// check root
|
|
assert_eq!(tree_opt.root(), tree_opt.get_subtree_root(0, i).unwrap());
|
|
}
|
|
|
|
// check intermediate nodes
|
|
for n in (1..=depth).rev() {
|
|
for i in (0..(1 << n)).step_by(2) {
|
|
let idx_l = i * (1 << (depth - n));
|
|
let idx_r = (i + 1) * (1 << (depth - n));
|
|
let idx_sr = idx_l;
|
|
|
|
let prev_l = tree_opt.get_subtree_root(n, idx_l).unwrap();
|
|
let prev_r = tree_opt.get_subtree_root(n, idx_r).unwrap();
|
|
let subroot = tree_opt.get_subtree_root(n - 1, idx_sr).unwrap();
|
|
|
|
// check intermediate nodes
|
|
assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_proof() {
|
|
let nof_leaves = 4;
|
|
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
|
|
|
|
// We thest the FullMerkleTree implementation
|
|
let mut tree = default_full_merkle_tree(DEFAULT_DEPTH);
|
|
for i in 0..nof_leaves {
|
|
// We set the leaves
|
|
tree.set(i, leaves[i]).unwrap();
|
|
|
|
// We compute a merkle proof
|
|
let proof = tree.proof(i).expect("index should be set");
|
|
|
|
// We verify if the merkle proof corresponds to the right leaf index
|
|
assert_eq!(proof.leaf_index(), i);
|
|
|
|
// We verify the proof
|
|
assert!(tree.verify(&leaves[i], &proof).unwrap());
|
|
|
|
// We ensure that the Merkle proof and the leaf generate the same root as the tree
|
|
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
|
|
|
|
// We check that the proof is not valid for another leaf
|
|
assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap());
|
|
}
|
|
|
|
// We test the OptimalMerkleTree implementation
|
|
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
|
|
for i in 0..nof_leaves {
|
|
// We set the leaves
|
|
tree.set(i, leaves[i]).unwrap();
|
|
|
|
// We compute a merkle proof
|
|
let proof = tree.proof(i).expect("index should be set");
|
|
|
|
// We verify if the merkle proof corresponds to the right leaf index
|
|
assert_eq!(proof.leaf_index(), i);
|
|
|
|
// We verify the proof
|
|
assert!(tree.verify(&leaves[i], &proof).unwrap());
|
|
|
|
// We ensure that the Merkle proof and the leaf generate the same root as the tree
|
|
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
|
|
|
|
// We check that the proof is not valid for another leaf
|
|
assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_override_range() {
|
|
let nof_leaves = 4;
|
|
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
|
|
|
|
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
|
|
|
|
// We set the leaves
|
|
tree.set_range(0, leaves.iter().cloned()).unwrap();
|
|
|
|
let new_leaves = [
|
|
hex!("0000000000000000000000000000000000000000000000000000000000000005"),
|
|
hex!("0000000000000000000000000000000000000000000000000000000000000006"),
|
|
]
|
|
.map(TestFr);
|
|
|
|
let to_delete_indices: [usize; 2] = [0, 1];
|
|
|
|
// We override the leaves
|
|
tree.override_range(
|
|
0, // start from the end of the initial leaves
|
|
new_leaves.iter().cloned(),
|
|
to_delete_indices.iter().cloned(),
|
|
)
|
|
.unwrap();
|
|
|
|
// ensure that the leaves are set correctly
|
|
for (i, &new_leaf) in new_leaves.iter().enumerate() {
|
|
assert_eq!(tree.get_leaf(i), new_leaf);
|
|
}
|
|
}
|
|
}
|