#[cfg(test)] mod test { use ark_ff::BigInt; use ark_std::{rand::thread_rng, UniformRand}; use rand::Rng; use rln::circuit::{Fr, TEST_TREE_HEIGHT}; use rln::hashers::{hash_to_field, poseidon_hash as utils_poseidon_hash, ROUND_PARAMS}; use rln::protocol::{compute_tree_root, deserialize_identity_tuple}; use rln::public::{hash as public_hash, poseidon_hash as public_poseidon_hash, RLN}; use rln::utils::*; use std::io::Cursor; #[test] // This test is similar to the one in lib, but uses only public API fn test_merkle_proof() { let leaf_index = 3; let user_message_limit = 1; let mut rln = RLN::new(TEST_TREE_HEIGHT, generate_input_buffer()).unwrap(); // generate identity let identity_secret_hash = hash_to_field(b"test-merkle-proof"); let id_commitment = utils_poseidon_hash(&vec![identity_secret_hash]); let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit.into()]); // We pass rate_commitment as Read buffer to RLN's set_leaf let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment)); rln.set_leaf(leaf_index, &mut buffer).unwrap(); // We check correct computation of the root let mut buffer = Cursor::new(Vec::::new()); rln.get_root(&mut buffer).unwrap(); let (root, _) = bytes_le_to_fr(&buffer.into_inner()); assert_eq!( root, Fr::from(BigInt([ 17110646155607829651, 5040045984242729823, 6965416728592533086, 2328960363755461975 ])) ); // We check correct computation of merkle proof let mut buffer = Cursor::new(Vec::::new()); rln.get_proof(leaf_index, &mut buffer).unwrap(); let buffer_inner = buffer.into_inner(); let (path_elements, read) = bytes_le_to_vec_fr(&buffer_inner).unwrap(); let (identity_path_index, _) = bytes_le_to_vec_u8(&buffer_inner[read..].to_vec()).unwrap(); // We check correct computation of the path and indexes let expected_path_elements: Vec = [ "0x0000000000000000000000000000000000000000000000000000000000000000", "0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864", "0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1", "0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238", "0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a", "0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55", "0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78", "0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d", "0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61", "0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747", "0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2", "0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636", "0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a", "0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0", "0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c", "0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92", "0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323", "0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992", "0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f", "0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca", ] .map(|e| str_to_fr(e, 16).unwrap()) .to_vec(); let expected_identity_path_index: Vec = vec![1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; assert_eq!(path_elements, expected_path_elements); assert_eq!(identity_path_index, expected_identity_path_index); // We double check that the proof computed from public API is correct let root_from_proof = compute_tree_root( &identity_secret_hash, &user_message_limit.into(), &path_elements, &identity_path_index, ); assert_eq!(root, root_from_proof); } #[test] fn test_seeded_keygen() { let rln = RLN::default(); let seed_bytes: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; let mut input_buffer = Cursor::new(&seed_bytes); let mut output_buffer = Cursor::new(Vec::::new()); rln.seeded_key_gen(&mut input_buffer, &mut output_buffer) .unwrap(); let serialized_output = output_buffer.into_inner(); let (identity_secret_hash, read) = bytes_le_to_fr(&serialized_output); let (id_commitment, _) = bytes_le_to_fr(&serialized_output[read..].to_vec()); // We check against expected values let expected_identity_secret_hash_seed_bytes = str_to_fr( "0x766ce6c7e7a01bdf5b3f257616f603918c30946fa23480f2859c597817e6716", 16, ) .unwrap(); let expected_id_commitment_seed_bytes = str_to_fr( "0xbf16d2b5c0d6f9d9d561e05bfca16a81b4b873bb063508fae360d8c74cef51f", 16, ) .unwrap(); assert_eq!( identity_secret_hash, expected_identity_secret_hash_seed_bytes ); assert_eq!(id_commitment, expected_id_commitment_seed_bytes); } #[test] fn test_seeded_extended_keygen() { let rln = RLN::default(); let seed_bytes: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; let mut input_buffer = Cursor::new(&seed_bytes); let mut output_buffer = Cursor::new(Vec::::new()); rln.seeded_extended_key_gen(&mut input_buffer, &mut output_buffer) .unwrap(); let serialized_output = output_buffer.into_inner(); let (identity_trapdoor, identity_nullifier, identity_secret_hash, id_commitment) = deserialize_identity_tuple(serialized_output); // We check against expected values let expected_identity_trapdoor_seed_bytes = str_to_fr( "0x766ce6c7e7a01bdf5b3f257616f603918c30946fa23480f2859c597817e6716", 16, ) .unwrap(); let expected_identity_nullifier_seed_bytes = str_to_fr( "0x1f18714c7bc83b5bca9e89d404cf6f2f585bc4c0f7ed8b53742b7e2b298f50b4", 16, ) .unwrap(); let expected_identity_secret_hash_seed_bytes = str_to_fr( "0x2aca62aaa7abaf3686fff2caf00f55ab9462dc12db5b5d4bcf3994e671f8e521", 16, ) .unwrap(); let expected_id_commitment_seed_bytes = str_to_fr( "0x68b66aa0a8320d2e56842581553285393188714c48f9b17acd198b4f1734c5c", 16, ) .unwrap(); assert_eq!(identity_trapdoor, expected_identity_trapdoor_seed_bytes); assert_eq!(identity_nullifier, expected_identity_nullifier_seed_bytes); assert_eq!( identity_secret_hash, expected_identity_secret_hash_seed_bytes ); assert_eq!(id_commitment, expected_id_commitment_seed_bytes); } #[test] fn test_hash_to_field() { let mut rng = thread_rng(); let signal: [u8; 32] = rng.gen(); let mut input_buffer = Cursor::new(&signal); let mut output_buffer = Cursor::new(Vec::::new()); public_hash(&mut input_buffer, &mut output_buffer).unwrap(); let serialized_hash = output_buffer.into_inner(); let (hash1, _) = bytes_le_to_fr(&serialized_hash); let hash2 = hash_to_field(&signal); assert_eq!(hash1, hash2); } #[test] fn test_poseidon_hash() { let mut rng = thread_rng(); let number_of_inputs = rng.gen_range(1..ROUND_PARAMS.len()); let mut inputs = Vec::with_capacity(number_of_inputs); for _ in 0..number_of_inputs { inputs.push(Fr::rand(&mut rng)); } let expected_hash = utils_poseidon_hash(&inputs); let mut input_buffer = Cursor::new(vec_fr_to_bytes_le(&inputs).unwrap()); let mut output_buffer = Cursor::new(Vec::::new()); public_poseidon_hash(&mut input_buffer, &mut output_buffer).unwrap(); let serialized_hash = output_buffer.into_inner(); let (hash, _) = bytes_le_to_fr(&serialized_hash); assert_eq!(hash, expected_hash); } }