Refactoring (#219)

* public_api_tests module

* add tests to new module

* rm tests

* fmt

* rm redundunt code

* fmt
This commit is contained in:
tyshko-rostyslav 2023-10-30 09:37:17 +01:00 committed by GitHub
parent 0997d15d33
commit 25f822e779
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 1000 additions and 993 deletions

View File

@ -7,6 +7,8 @@ pub mod pm_tree_adapter;
pub mod poseidon_tree;
pub mod protocol;
pub mod public;
#[cfg(test)]
pub mod public_api_tests;
pub mod utils;
#[cfg(not(target_arch = "wasm32"))]

File diff suppressed because it is too large Load Diff

995
rln/src/public_api_tests.rs Normal file
View File

@ -0,0 +1,995 @@
use crate::circuit::{Curve, Fr, TEST_RESOURCES_FOLDER, TEST_TREE_HEIGHT};
use crate::hashers::{hash_to_field, poseidon_hash as utils_poseidon_hash};
use crate::protocol::*;
use crate::public::RLN;
use crate::utils::*;
use ark_groth16::Proof as ArkProof;
use ark_serialize::{CanonicalDeserialize, Read};
use num_bigint::BigInt;
use std::io::Cursor;
use std::str::FromStr;
use utils::ZerokitMerkleTree;
use ark_std::{rand::thread_rng, UniformRand};
use rand::Rng;
use serde_json::{json, Value};
#[test]
// We test merkle batch Merkle tree additions
fn test_merkle_operations() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We first add leaves one by one specifying the index
for (i, leaf) in leaves.iter().enumerate() {
// We check if the number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), i);
let mut buffer = Cursor::new(fr_to_bytes_le(&leaf));
rln.set_leaf(i, &mut buffer).unwrap();
}
// We get the root of the tree obtained adding one leaf per time
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_single, _) = bytes_le_to_fr(&buffer.into_inner());
// We reset the tree to default
rln.set_tree(tree_height).unwrap();
// We add leaves one by one using the internal index (new leaves goes in next available position)
for leaf in &leaves {
let mut buffer = Cursor::new(fr_to_bytes_le(&leaf));
rln.set_next_leaf(&mut buffer).unwrap();
}
// We check if numbers of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves using the internal index
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_next, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_single, root_next);
// We reset the tree to default
rln.set_tree(tree_height).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_batch, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_single, root_batch);
// We now delete all leaves set and check if the root corresponds to the empty tree root
// delete calls over indexes higher than no_of_leaves are ignored and will not increase self.tree.next_index
for i in 0..no_of_leaves {
rln.delete_leaf(i).unwrap();
}
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_delete, _) = bytes_le_to_fr(&buffer.into_inner());
// We reset the tree to default
rln.set_tree(tree_height).unwrap();
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_empty, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_delete, root_empty);
}
#[test]
// We test leaf setting with a custom index, to enable batch updates to the root
// Uses `set_leaves_from` to set leaves in a batch, from index `start_index`
fn test_leaf_setting_with_index() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// set_index is the index from which we start setting leaves
// random number between 0..no_of_leaves
let set_index = rng.gen_range(0..no_of_leaves) as usize;
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_batch_with_init, _) = bytes_le_to_fr(&buffer.into_inner());
// `init_tree_with_leaves` resets the tree to the height it was initialized with, using `set_tree`
// We add leaves in a batch starting from index 0..set_index
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves[0..set_index]).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We add the remaining n leaves in a batch starting from index m
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves[set_index..]).unwrap());
rln.set_leaves_from(set_index, &mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_batch_with_custom_index, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_batch_with_init, root_batch_with_custom_index);
// We reset the tree to default
rln.set_tree(tree_height).unwrap();
// We add leaves one by one using the internal index (new leaves goes in next available position)
for leaf in &leaves {
let mut buffer = Cursor::new(fr_to_bytes_le(&leaf));
rln.set_next_leaf(&mut buffer).unwrap();
}
// We check if numbers of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves using the internal index
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_single_additions, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_batch_with_init, root_single_additions);
rln.flush().unwrap();
}
#[test]
// Tests the atomic_operation fn, which set_leaves_from uses internally
fn test_atomic_operation() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_insertion, _) = bytes_le_to_fr(&buffer.into_inner());
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
let last_leaf = leaves.last().unwrap();
let last_leaf_index = no_of_leaves - 1;
let indices = vec![last_leaf_index as u8];
let last_leaf = vec![*last_leaf];
let indices_buffer = Cursor::new(vec_u8_to_bytes_le(&indices).unwrap());
let leaves_buffer = Cursor::new(vec_fr_to_bytes_le(&last_leaf).unwrap());
rln.atomic_operation(last_leaf_index, leaves_buffer, indices_buffer)
.unwrap();
// We get the root of the tree obtained after a no-op
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_noop, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_after_insertion, root_after_noop);
}
#[test]
fn test_atomic_operation_zero_indexed() {
// Test duplicated from https://github.com/waku-org/go-zerokit-rln/pull/12/files
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_insertion, _) = bytes_le_to_fr(&buffer.into_inner());
let zero_index = 0;
let indices = vec![zero_index as u8];
let zero_leaf: Vec<Fr> = vec![];
let indices_buffer = Cursor::new(vec_u8_to_bytes_le(&indices).unwrap());
let leaves_buffer = Cursor::new(vec_fr_to_bytes_le(&zero_leaf).unwrap());
rln.atomic_operation(0, leaves_buffer, indices_buffer)
.unwrap();
// We get the root of the tree obtained after a deletion
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_deletion, _) = bytes_le_to_fr(&buffer.into_inner());
assert_ne!(root_after_insertion, root_after_deletion);
}
#[test]
fn test_atomic_operation_consistency() {
// Test duplicated from https://github.com/waku-org/go-zerokit-rln/pull/12/files
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), no_of_leaves);
// We get the root of the tree obtained adding leaves in batch
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_insertion, _) = bytes_le_to_fr(&buffer.into_inner());
let set_index = rng.gen_range(0..no_of_leaves) as usize;
let indices = vec![set_index as u8];
let zero_leaf: Vec<Fr> = vec![];
let indices_buffer = Cursor::new(vec_u8_to_bytes_le(&indices).unwrap());
let leaves_buffer = Cursor::new(vec_fr_to_bytes_le(&zero_leaf).unwrap());
rln.atomic_operation(0, leaves_buffer, indices_buffer)
.unwrap();
// We get the root of the tree obtained after a deletion
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_deletion, _) = bytes_le_to_fr(&buffer.into_inner());
assert_ne!(root_after_insertion, root_after_deletion);
// We get the leaf
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.get_leaf(set_index, &mut output_buffer).unwrap();
let (received_leaf, _) = bytes_le_to_fr(output_buffer.into_inner().as_ref());
assert_eq!(received_leaf, Fr::from(0));
}
#[allow(unused_must_use)]
#[test]
// This test checks if `set_leaves_from` throws an error when the index is out of bounds
fn test_set_leaves_bad_index() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
let bad_index = (1 << tree_height) - rng.gen_range(0..no_of_leaves) as usize;
// We create a new tree
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// Get root of empty tree
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_empty, _) = bytes_le_to_fr(&buffer.into_inner());
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.set_leaves_from(bad_index, &mut buffer)
.expect_err("Should throw an error");
// We check if number of leaves set is consistent
assert_eq!(rln.tree.leaves_set(), 0);
// Get the root of the tree
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root_after_bad_set, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(root_empty, root_after_bad_set);
}
fn fq_from_str(s: String) -> ark_bn254::Fq {
ark_bn254::Fq::from_str(&s).unwrap()
}
fn g1_from_str(g1: &[String]) -> ark_bn254::G1Affine {
let x = fq_from_str(g1[0].clone());
let y = fq_from_str(g1[1].clone());
let z = fq_from_str(g1[2].clone());
ark_bn254::G1Affine::from(ark_bn254::G1Projective::new(x, y, z))
}
fn g2_from_str(g2: &[Vec<String>]) -> ark_bn254::G2Affine {
let c0 = fq_from_str(g2[0][0].clone());
let c1 = fq_from_str(g2[0][1].clone());
let x = ark_bn254::Fq2::new(c0, c1);
let c0 = fq_from_str(g2[1][0].clone());
let c1 = fq_from_str(g2[1][1].clone());
let y = ark_bn254::Fq2::new(c0, c1);
let c0 = fq_from_str(g2[2][0].clone());
let c1 = fq_from_str(g2[2][1].clone());
let z = ark_bn254::Fq2::new(c0, c1);
ark_bn254::G2Affine::from(ark_bn254::G2Projective::new(x, y, z))
}
fn value_to_string_vec(value: &Value) -> Vec<String> {
value
.as_array()
.unwrap()
.into_iter()
.map(|val| val.as_str().unwrap().to_string())
.collect()
}
#[test]
fn test_groth16_proof_hardcoded() {
let tree_height = TEST_TREE_HEIGHT;
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let rln = RLN::new(tree_height, input_buffer).unwrap();
let valid_snarkjs_proof = json!({
"pi_a": [
"606446415626469993821291758185575230335423926365686267140465300918089871829",
"14881534001609371078663128199084130129622943308489025453376548677995646280161",
"1"
],
"pi_b": [
[
"18053812507994813734583839134426913715767914942522332114506614735770984570178",
"11219916332635123001710279198522635266707985651975761715977705052386984005181"
],
[
"17371289494006920912949790045699521359436706797224428511776122168520286372970",
"14038575727257298083893642903204723310279435927688342924358714639926373603890"
],
[
"1",
"0"
]
],
"pi_c": [
"17701377127561410274754535747274973758826089226897242202671882899370780845888",
"12608543716397255084418384146504333522628400182843246910626782513289789807030",
"1"
],
"protocol": "groth16",
"curve": "bn128"
});
let valid_ark_proof = ArkProof {
a: g1_from_str(&value_to_string_vec(&valid_snarkjs_proof["pi_a"])),
b: g2_from_str(
&valid_snarkjs_proof["pi_b"]
.as_array()
.unwrap()
.iter()
.map(|item| value_to_string_vec(item))
.collect::<Vec<Vec<String>>>(),
),
c: g1_from_str(&value_to_string_vec(&valid_snarkjs_proof["pi_c"])),
};
let valid_proof_values = RLNProofValues {
x: str_to_fr(
"20645213238265527935869146898028115621427162613172918400241870500502509785943",
10,
)
.unwrap(),
external_nullifier: str_to_fr(
"21074405743803627666274838159589343934394162804826017440941339048886754734203",
10,
)
.unwrap(),
y: str_to_fr(
"16401008481486069296141645075505218976370369489687327284155463920202585288271",
10,
)
.unwrap(),
root: str_to_fr(
"8502402278351299594663821509741133196466235670407051417832304486953898514733",
10,
)
.unwrap(),
nullifier: str_to_fr(
"9102791780887227194595604713537772536258726662792598131262022534710887343694",
10,
)
.unwrap(),
};
let verified = verify_proof(&rln.verification_key, &valid_ark_proof, &valid_proof_values);
assert!(verified.unwrap());
}
#[test]
// This test is similar to the one in lib, but uses only public API
fn test_groth16_proof() {
let tree_height = TEST_TREE_HEIGHT;
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// Note: we only test Groth16 proof generation, so we ignore setting the tree in the RLN object
let rln_witness = random_rln_witness(tree_height);
let proof_values = proof_values_from_witness(&rln_witness).unwrap();
// We compute a Groth16 proof
let mut input_buffer = Cursor::new(serialize_witness(&rln_witness).unwrap());
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.prove(&mut input_buffer, &mut output_buffer).unwrap();
let serialized_proof = output_buffer.into_inner();
// Before checking public verify API, we check that the (deserialized) proof generated by prove is actually valid
let proof = ArkProof::deserialize_compressed(&mut Cursor::new(&serialized_proof)).unwrap();
let verified = verify_proof(&rln.verification_key, &proof, &proof_values);
// dbg!(verified.unwrap());
assert!(verified.unwrap());
// We prepare the input to prove API, consisting of serialized_proof (compressed, 4*32 bytes) || serialized_proof_values (6*32 bytes)
let serialized_proof_values = serialize_proof_values(&proof_values);
let mut verify_data = Vec::<u8>::new();
verify_data.extend(&serialized_proof);
verify_data.extend(&serialized_proof_values);
let mut input_buffer = Cursor::new(verify_data);
// We verify the Groth16 proof against the provided proof values
let verified = rln.verify(&mut input_buffer).unwrap();
assert!(verified);
}
#[test]
fn test_rln_proof() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
let id_commitment = Fr::rand(&mut rng);
let rate_commitment = utils_poseidon_hash(&[id_commitment, Fr::from(100)]);
leaves.push(rate_commitment);
}
// We create a new RLN instance
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
// We set as leaf rate_commitment after storing its index
let identity_index = rln.tree.leaves_set();
let user_message_limit = Fr::from(65535);
let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit]);
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
rln.set_next_leaf(&mut buffer).unwrap();
// We generate a random signal
let mut rng = rand::thread_rng();
let signal: [u8; 32] = rng.gen();
// We generate a random epoch
let epoch = hash_to_field(b"test-epoch");
// We generate a random rln_identifier
let rln_identifier = hash_to_field(b"test-rln-identifier");
// We prepare input for generate_rln_proof API
let mut serialized: Vec<u8> = Vec::new();
serialized.append(&mut fr_to_bytes_le(&identity_secret_hash));
serialized.append(&mut normalize_usize(identity_index));
serialized.append(&mut fr_to_bytes_le(&user_message_limit));
serialized.append(&mut fr_to_bytes_le(&Fr::from(1)));
serialized.append(&mut fr_to_bytes_le(&utils_poseidon_hash(&[
epoch,
rln_identifier,
])));
serialized.append(&mut normalize_usize(signal.len()));
serialized.append(&mut signal.to_vec());
let mut input_buffer = Cursor::new(serialized);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
// output_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let mut proof_data = output_buffer.into_inner();
// We prepare input for verify_rln_proof API
// input_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> | signal_len<8> | signal<var> ]
// that is [ proof_data || signal_len<8> | signal<var> ]
proof_data.append(&mut normalize_usize(signal.len()));
proof_data.append(&mut signal.to_vec());
let mut input_buffer = Cursor::new(proof_data);
let verified = rln.verify_rln_proof(&mut input_buffer).unwrap();
assert!(verified);
}
#[test]
fn test_rln_with_witness() {
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new RLN instance
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
// We set as leaf rate_commitment after storing its index
let identity_index = rln.tree.leaves_set();
let user_message_limit = Fr::from(100);
let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit]);
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
rln.set_next_leaf(&mut buffer).unwrap();
// We generate a random signal
let mut rng = rand::thread_rng();
let signal: [u8; 32] = rng.gen();
// We generate a random epoch
let epoch = hash_to_field(b"test-epoch");
// We generate a random rln_identifier
let rln_identifier = hash_to_field(b"test-rln-identifier");
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
let mut serialized: Vec<u8> = Vec::new();
serialized.append(&mut fr_to_bytes_le(&identity_secret_hash));
serialized.append(&mut normalize_usize(identity_index));
serialized.append(&mut fr_to_bytes_le(&user_message_limit));
serialized.append(&mut fr_to_bytes_le(&Fr::from(1)));
serialized.append(&mut fr_to_bytes_le(&utils_poseidon_hash(&[
epoch,
rln_identifier,
])));
serialized.append(&mut normalize_usize(signal.len()));
serialized.append(&mut signal.to_vec());
let mut input_buffer = Cursor::new(serialized);
// We read input RLN witness and we serialize_compressed it
let mut witness_byte: Vec<u8> = Vec::new();
input_buffer.read_to_end(&mut witness_byte).unwrap();
let (rln_witness, _) = proof_inputs_to_rln_witness(&mut rln.tree, &witness_byte).unwrap();
let serialized_witness = serialize_witness(&rln_witness).unwrap();
// Calculate witness outside zerokit (simulating what JS is doing)
let inputs = inputs_for_witness_calculation(&rln_witness)
.unwrap()
.into_iter()
.map(|(name, values)| (name.to_string(), values));
let calculated_witness = rln
.witness_calculator
.lock()
.expect("witness_calculator mutex should not get poisoned")
.calculate_witness_element::<Curve, _>(inputs, false)
.map_err(ProofError::WitnessError)
.unwrap();
let calculated_witness_vec: Vec<BigInt> = calculated_witness
.into_iter()
.map(|v| to_bigint(&v).unwrap())
.collect();
// Generating the proof
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof_with_witness(
calculated_witness_vec,
serialized_witness,
&mut output_buffer,
)
.unwrap();
// output_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let mut proof_data = output_buffer.into_inner();
// We prepare input for verify_rln_proof API
// input_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> | signal_len<8> | signal<var> ]
// that is [ proof_data || signal_len<8> | signal<var> ]
proof_data.append(&mut normalize_usize(signal.len()));
proof_data.append(&mut signal.to_vec());
let mut input_buffer = Cursor::new(proof_data);
let verified = rln.verify_rln_proof(&mut input_buffer).unwrap();
assert!(verified);
}
#[test]
fn proof_verification_with_roots() {
// The first part is similar to test_rln_with_witness
let tree_height = TEST_TREE_HEIGHT;
let no_of_leaves = 256;
// We generate a vector of random leaves
let mut leaves: Vec<Fr> = Vec::new();
let mut rng = thread_rng();
for _ in 0..no_of_leaves {
leaves.push(Fr::rand(&mut rng));
}
// We create a new RLN instance
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We add leaves in a batch into the tree
let mut buffer = Cursor::new(vec_fr_to_bytes_le(&leaves).unwrap());
rln.init_tree_with_leaves(&mut buffer).unwrap();
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
// We set as leaf id_commitment after storing its index
let identity_index = rln.tree.leaves_set();
let user_message_limit = Fr::from(100);
let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit]);
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
rln.set_next_leaf(&mut buffer).unwrap();
// We generate a random signal
let mut rng = thread_rng();
let signal: [u8; 32] = rng.gen();
// We generate a random epoch
let epoch = hash_to_field(b"test-epoch");
// We generate a random rln_identifier
let rln_identifier = hash_to_field(b"test-rln-identifier");
let external_nullifier = utils_poseidon_hash(&[epoch, rln_identifier]);
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | rln_identifier<32> | user_message_limit<32> | message_id<32> | signal_len<8> | signal<var> ]
let mut serialized: Vec<u8> = Vec::new();
serialized.append(&mut fr_to_bytes_le(&identity_secret_hash));
serialized.append(&mut normalize_usize(identity_index));
serialized.append(&mut fr_to_bytes_le(&user_message_limit));
serialized.append(&mut fr_to_bytes_le(&Fr::from(1)));
serialized.append(&mut fr_to_bytes_le(&external_nullifier));
serialized.append(&mut normalize_usize(signal.len()));
serialized.append(&mut signal.to_vec());
let mut input_buffer = Cursor::new(serialized);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
// output_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let mut proof_data = output_buffer.into_inner();
// We prepare input for verify_rln_proof API
// input_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> | signal_len<8> | signal<var> ]
// that is [ proof_data || signal_len<8> | signal<var> ]
proof_data.append(&mut normalize_usize(signal.len()));
proof_data.append(&mut signal.to_vec());
let input_buffer = Cursor::new(proof_data);
// If no roots is provided, proof validation is skipped and if the remaining proof values are valid, the proof will be correctly verified
let mut roots_serialized: Vec<u8> = Vec::new();
let mut roots_buffer = Cursor::new(roots_serialized.clone());
let verified = rln
.verify_with_roots(&mut input_buffer.clone(), &mut roots_buffer)
.unwrap();
assert!(verified);
// We serialize in the roots buffer some random values and we check that the proof is not verified since doesn't contain the correct root the proof refers to
for _ in 0..5 {
roots_serialized.append(&mut fr_to_bytes_le(&Fr::rand(&mut rng)));
}
roots_buffer = Cursor::new(roots_serialized.clone());
let verified = rln
.verify_with_roots(&mut input_buffer.clone(), &mut roots_buffer)
.unwrap();
assert_eq!(verified, false);
// We get the root of the tree obtained adding one leaf per time
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root, _) = bytes_le_to_fr(&buffer.into_inner());
// We add the real root and we check if now the proof is verified
roots_serialized.append(&mut fr_to_bytes_le(&root));
roots_buffer = Cursor::new(roots_serialized.clone());
let verified = rln
.verify_with_roots(&mut input_buffer.clone(), &mut roots_buffer)
.unwrap();
assert!(verified);
}
#[test]
fn test_recover_id_secret() {
let tree_height = TEST_TREE_HEIGHT;
// We create a new RLN instance
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
let user_message_limit = Fr::from(100);
let message_id = Fr::from(0);
let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit]);
// We set as leaf id_commitment after storing its index
let identity_index = rln.tree.leaves_set();
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
rln.set_next_leaf(&mut buffer).unwrap();
// We generate two random signals
let mut rng = rand::thread_rng();
let signal1: [u8; 32] = rng.gen();
let signal2: [u8; 32] = rng.gen();
// We generate a random epoch
let epoch = hash_to_field(b"test-epoch");
// We generate a random rln_identifier
let rln_identifier = hash_to_field(b"test-rln-identifier");
let external_nullifier = utils_poseidon_hash(&[epoch, rln_identifier]);
// We generate two proofs using same epoch but different signals.
// We prepare input for generate_rln_proof API
let mut serialized1: Vec<u8> = Vec::new();
serialized1.append(&mut fr_to_bytes_le(&identity_secret_hash));
serialized1.append(&mut normalize_usize(identity_index));
serialized1.append(&mut fr_to_bytes_le(&user_message_limit));
serialized1.append(&mut fr_to_bytes_le(&message_id));
serialized1.append(&mut fr_to_bytes_le(&external_nullifier));
// The first part is the same for both proof input, so we clone
let mut serialized2 = serialized1.clone();
// We attach the first signal to the first proof input
serialized1.append(&mut normalize_usize(signal1.len()));
serialized1.append(&mut signal1.to_vec());
// We attach the second signal to the first proof input
serialized2.append(&mut normalize_usize(signal2.len()));
serialized2.append(&mut signal2.to_vec());
// We generate the first proof
let mut input_buffer = Cursor::new(serialized1);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
let proof_data_1 = output_buffer.into_inner();
// We generate the second proof
let mut input_buffer = Cursor::new(serialized2);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
let proof_data_2 = output_buffer.into_inner();
let mut input_proof_data_1 = Cursor::new(proof_data_1.clone());
let mut input_proof_data_2 = Cursor::new(proof_data_2);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.recover_id_secret(
&mut input_proof_data_1,
&mut input_proof_data_2,
&mut output_buffer,
)
.unwrap();
let serialized_identity_secret_hash = output_buffer.into_inner();
// We ensure that a non-empty value is written to output_buffer
assert!(!serialized_identity_secret_hash.is_empty());
// We check if the recovered identity secret hash corresponds to the original one
let (recovered_identity_secret_hash, _) = bytes_le_to_fr(&serialized_identity_secret_hash);
assert_eq!(recovered_identity_secret_hash, identity_secret_hash);
// We now test that computing identity_secret_hash is unsuccessful if shares computed from two different identity secret hashes but within same epoch are passed
// We generate a new identity pair
let (identity_secret_hash_new, id_commitment_new) = keygen();
let rate_commitment_new = utils_poseidon_hash(&[id_commitment_new, user_message_limit]);
// We add it to the tree
let identity_index_new = rln.tree.leaves_set();
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment_new));
rln.set_next_leaf(&mut buffer).unwrap();
// We generate a random signals
let signal3: [u8; 32] = rng.gen();
// We prepare proof input. Note that epoch is the same as before
let mut serialized3: Vec<u8> = Vec::new();
serialized3.append(&mut fr_to_bytes_le(&identity_secret_hash_new));
serialized3.append(&mut normalize_usize(identity_index_new));
serialized3.append(&mut fr_to_bytes_le(&user_message_limit));
serialized3.append(&mut fr_to_bytes_le(&message_id));
serialized3.append(&mut fr_to_bytes_le(&external_nullifier));
serialized3.append(&mut normalize_usize(signal3.len()));
serialized3.append(&mut signal3.to_vec());
// We generate the proof
let mut input_buffer = Cursor::new(serialized3);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
let proof_data_3 = output_buffer.into_inner();
// We attempt to recover the secret using share1 (coming from identity_secret_hash) and share3 (coming from identity_secret_hash_new)
let mut input_proof_data_1 = Cursor::new(proof_data_1.clone());
let mut input_proof_data_3 = Cursor::new(proof_data_3);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.recover_id_secret(
&mut input_proof_data_1,
&mut input_proof_data_3,
&mut output_buffer,
)
.unwrap();
let serialized_identity_secret_hash = output_buffer.into_inner();
let (recovered_identity_secret_hash_new, _) = bytes_le_to_fr(&serialized_identity_secret_hash);
// ensure that the recovered secret does not match with either of the
// used secrets in proof generation
assert_ne!(recovered_identity_secret_hash_new, identity_secret_hash_new);
}
#[test]
fn test_get_leaf() {
// We generate a random tree
let tree_height = 10;
let mut rng = thread_rng();
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// We generate a random leaf
let leaf = Fr::rand(&mut rng);
// We generate a random index
let index = rng.gen_range(0..rln.tree.capacity());
// We add the leaf to the tree
let mut buffer = Cursor::new(fr_to_bytes_le(&leaf));
rln.set_leaf(index, &mut buffer).unwrap();
// We get the leaf
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.get_leaf(index, &mut output_buffer).unwrap();
// We ensure that the leaf is the same as the one we added
let (received_leaf, _) = bytes_le_to_fr(output_buffer.into_inner().as_ref());
assert_eq!(received_leaf, leaf);
}
#[test]
fn test_metadata() {
let tree_height = TEST_TREE_HEIGHT;
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
let arbitrary_metadata: &[u8] = b"block_number:200000";
rln.set_metadata(arbitrary_metadata).unwrap();
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_metadata(&mut buffer).unwrap();
let received_metadata = buffer.into_inner();
assert_eq!(arbitrary_metadata, received_metadata);
}