2023-01-31 15:57:28 +00:00
#[ cfg(test) ]
mod test {
use ark_std ::{ rand ::thread_rng , UniformRand } ;
use rand ::Rng ;
use rln ::circuit ::* ;
2023-02-16 07:56:13 +00:00
use rln ::ffi ::{ hash as ffi_hash , poseidon_hash as ffi_poseidon_hash , * } ;
use rln ::poseidon_hash ::{ poseidon_hash as utils_poseidon_hash , ROUND_PARAMS } ;
2023-01-31 15:57:28 +00:00
use rln ::protocol ::* ;
use rln ::public ::RLN ;
use rln ::utils ::* ;
use std ::fs ::File ;
use std ::io ::Read ;
use std ::mem ::MaybeUninit ;
use std ::time ::{ Duration , Instant } ;
#[ test ]
// We test merkle batch Merkle tree additions
fn test_merkle_operations_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
let no_of_leaves = 256 ;
// We generate a vector of random leaves
let mut leaves : Vec < Fr > = Vec ::new ( ) ;
let mut rng = thread_rng ( ) ;
for _ in 0 .. no_of_leaves {
leaves . push ( Fr ::rand ( & mut rng ) ) ;
}
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We first add leaves one by one specifying the index
for ( i , leaf ) in leaves . iter ( ) . enumerate ( ) {
// We prepare id_commitment and we set the leaf at provided index
let leaf_ser = fr_to_bytes_le ( & leaf ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_leaf ( rln_pointer , i , input_buffer ) ;
assert! ( success , " set leaf call failed " ) ;
}
// We get the root of the tree obtained adding one leaf per time
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_single , _ ) = bytes_le_to_fr ( & result_data ) ;
// We reset the tree to default
let success = set_tree ( rln_pointer , tree_height ) ;
assert! ( success , " set tree call failed " ) ;
// We add leaves one by one using the internal index (new leaves goes in next available position)
for leaf in & leaves {
let leaf_ser = fr_to_bytes_le ( & leaf ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
}
// We get the root of the tree obtained adding leaves using the internal index
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_next , _ ) = bytes_le_to_fr ( & result_data ) ;
// We check if roots are the same
assert_eq! ( root_single , root_next ) ;
// We reset the tree to default
let success = set_tree ( rln_pointer , tree_height ) ;
assert! ( success , " set tree call failed " ) ;
// We add leaves in a batch into the tree
2023-02-27 06:16:16 +00:00
let leaves_ser = vec_fr_to_bytes_le ( & leaves ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let input_buffer = & Buffer ::from ( leaves_ser . as_ref ( ) ) ;
let success = init_tree_with_leaves ( rln_pointer , input_buffer ) ;
assert! ( success , " init tree with leaves call failed " ) ;
// We get the root of the tree obtained adding leaves in batch
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_batch , _ ) = bytes_le_to_fr ( & result_data ) ;
// We check if roots are the same
assert_eq! ( root_single , root_batch ) ;
// We now delete all leaves set and check if the root corresponds to the empty tree root
// delete calls over indexes higher than no_of_leaves are ignored and will not increase self.tree.next_index
let delete_range = 2 * no_of_leaves ;
for i in 0 .. delete_range {
let success = delete_leaf ( rln_pointer , i ) ;
assert! ( success , " delete leaf call failed " ) ;
}
// We get the root of the tree obtained deleting all leaves
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_delete , _ ) = bytes_le_to_fr ( & result_data ) ;
// We reset the tree to default
let success = set_tree ( rln_pointer , tree_height ) ;
assert! ( success , " set tree call failed " ) ;
// We get the root of the empty tree
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_empty , _ ) = bytes_le_to_fr ( & result_data ) ;
// We check if roots are the same
assert_eq! ( root_delete , root_empty ) ;
}
#[ test ]
// This test is similar to the one in public.rs but it uses the RLN object as a pointer
// Uses `set_leaves_from` to set leaves in a batch
fn test_leaf_setting_with_index_ffi ( ) {
// We create a new tree
let tree_height = TEST_TREE_HEIGHT ;
let no_of_leaves = 256 ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We generate a vector of random leaves
let mut leaves : Vec < Fr > = Vec ::new ( ) ;
let mut rng = thread_rng ( ) ;
for _ in 0 .. no_of_leaves {
leaves . push ( Fr ::rand ( & mut rng ) ) ;
}
// set_index is the index from which we start setting leaves
// random number between 0..no_of_leaves
let set_index = rng . gen_range ( 0 .. no_of_leaves ) as usize ;
// We add leaves in a batch into the tree
2023-02-27 06:16:16 +00:00
let leaves_ser = vec_fr_to_bytes_le ( & leaves ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let input_buffer = & Buffer ::from ( leaves_ser . as_ref ( ) ) ;
let success = init_tree_with_leaves ( rln_pointer , input_buffer ) ;
assert! ( success , " init tree with leaves call failed " ) ;
// We get the root of the tree obtained adding leaves in batch
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_batch_with_init , _ ) = bytes_le_to_fr ( & result_data ) ;
// `init_tree_with_leaves` resets the tree to the height it was initialized with, using `set_tree`
// We add leaves in a batch starting from index 0..set_index
2023-02-27 06:16:16 +00:00
let leaves_m = vec_fr_to_bytes_le ( & leaves [ 0 .. set_index ] ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let buffer = & Buffer ::from ( leaves_m . as_ref ( ) ) ;
let success = init_tree_with_leaves ( rln_pointer , buffer ) ;
assert! ( success , " init tree with leaves call failed " ) ;
// We add the remaining n leaves in a batch starting from index set_index
2023-02-27 06:16:16 +00:00
let leaves_n = vec_fr_to_bytes_le ( & leaves [ set_index .. ] ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let buffer = & Buffer ::from ( leaves_n . as_ref ( ) ) ;
let success = set_leaves_from ( rln_pointer , set_index , buffer ) ;
assert! ( success , " set leaves from call failed " ) ;
// We get the root of the tree obtained adding leaves in batch
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_batch_with_custom_index , _ ) = bytes_le_to_fr ( & result_data ) ;
assert_eq! ( root_batch_with_init , root_batch_with_custom_index ) ;
// We reset the tree to default
let success = set_tree ( rln_pointer , tree_height ) ;
assert! ( success , " set tree call failed " ) ;
// We add leaves one by one using the internal index (new leaves goes in next available position)
for leaf in & leaves {
let leaf_ser = fr_to_bytes_le ( & leaf ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
}
// We get the root of the tree obtained adding leaves using the internal index
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_single_additions , _ ) = bytes_le_to_fr ( & result_data ) ;
assert_eq! ( root_batch_with_init , root_single_additions ) ;
}
#[ test ]
// This test is similar to the one in public.rs but it uses the RLN object as a pointer
fn test_set_leaves_bad_index_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
let no_of_leaves = 256 ;
// We generate a vector of random leaves
let mut leaves : Vec < Fr > = Vec ::new ( ) ;
let mut rng = thread_rng ( ) ;
for _ in 0 .. no_of_leaves {
leaves . push ( Fr ::rand ( & mut rng ) ) ;
}
let bad_index = ( 1 < < tree_height ) - rng . gen_range ( 0 .. no_of_leaves ) as usize ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// Get root of empty tree
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_empty , _ ) = bytes_le_to_fr ( & result_data ) ;
// We add leaves in a batch into the tree
2023-02-27 06:16:16 +00:00
let leaves = vec_fr_to_bytes_le ( & leaves ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let buffer = & Buffer ::from ( leaves . as_ref ( ) ) ;
let success = set_leaves_from ( rln_pointer , bad_index , buffer ) ;
assert! ( ! success , " set leaves from call succeeded " ) ;
// Get root of tree after attempted set
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_after_bad_set , _ ) = bytes_le_to_fr ( & result_data ) ;
assert_eq! ( root_empty , root_after_bad_set ) ;
}
#[ test ]
// This test is similar to the one in lib, but uses only public C API
fn test_merkle_proof_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
let leaf_index = 3 ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// generate identity
let identity_secret_hash = hash_to_field ( b " test-merkle-proof " ) ;
2023-02-16 07:56:13 +00:00
let id_commitment = utils_poseidon_hash ( & vec! [ identity_secret_hash ] ) ;
2023-01-31 15:57:28 +00:00
// We prepare id_commitment and we set the leaf at provided index
let leaf_ser = fr_to_bytes_le ( & id_commitment ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_leaf ( rln_pointer , leaf_index , input_buffer ) ;
assert! ( success , " set leaf call failed " ) ;
// We obtain the Merkle tree root
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root , _ ) = bytes_le_to_fr ( & result_data ) ;
// We obtain the Merkle tree root
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_proof ( rln_pointer , leaf_index , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get merkle proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
2023-02-27 06:16:16 +00:00
let ( path_elements , read ) = bytes_le_to_vec_fr ( & result_data ) . unwrap ( ) ;
let ( identity_path_index , _ ) = bytes_le_to_vec_u8 ( & result_data [ read .. ] . to_vec ( ) ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
// We check correct computation of the path and indexes
let mut expected_path_elements = vec! [
str_to_fr (
" 0x0000000000000000000000000000000000000000000000000000000000000000 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
] ;
let mut expected_identity_path_index : Vec < u8 > =
vec! [ 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
// We add the remaining elements for the case TEST_TREE_HEIGHT = 19
if TEST_TREE_HEIGHT = = 19 | | TEST_TREE_HEIGHT = = 20 {
expected_path_elements . append ( & mut vec! [
str_to_fr (
" 0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992 " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
str_to_fr (
" 0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ,
2023-01-31 15:57:28 +00:00
] ) ;
expected_identity_path_index . append ( & mut vec! [ 0 , 0 , 0 , 0 ] ) ;
}
if TEST_TREE_HEIGHT = = 20 {
expected_path_elements . append ( & mut vec! [ str_to_fr (
" 0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca " ,
16 ,
2023-02-27 06:16:16 +00:00
)
. unwrap ( ) ] ) ;
2023-01-31 15:57:28 +00:00
expected_identity_path_index . append ( & mut vec! [ 0 ] ) ;
}
assert_eq! ( path_elements , expected_path_elements ) ;
assert_eq! ( identity_path_index , expected_identity_path_index ) ;
// We double check that the proof computed from public API is correct
let root_from_proof =
compute_tree_root ( & id_commitment , & path_elements , & identity_path_index , false ) ;
assert_eq! ( root , root_from_proof ) ;
}
#[ test ]
// Benchmarks proof generation and verification
fn test_groth16_proofs_performance_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We compute some benchmarks regarding proof and verify API calls
// Note that circuit loading requires some initial overhead.
// Once the circuit is loaded (i.e., when the RLN object is created), proof generation and verification times should be similar at each call.
let sample_size = 100 ;
let mut prove_time : u128 = 0 ;
let mut verify_time : u128 = 0 ;
for _ in 0 .. sample_size {
// We generate random witness instances and relative proof values
let rln_witness = random_rln_witness ( tree_height ) ;
let proof_values = proof_values_from_witness ( & rln_witness ) ;
// We prepare id_commitment and we set the leaf at provided index
2023-02-27 06:16:16 +00:00
let rln_witness_ser = serialize_witness ( & rln_witness ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let input_buffer = & Buffer ::from ( rln_witness_ser . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let now = Instant ::now ( ) ;
let success = prove ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
prove_time + = now . elapsed ( ) . as_nanos ( ) ;
assert! ( success , " prove call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// We read the returned proof and we append proof values for verify
let serialized_proof = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let serialized_proof_values = serialize_proof_values ( & proof_values ) ;
let mut verify_data = Vec ::< u8 > ::new ( ) ;
verify_data . extend ( & serialized_proof ) ;
verify_data . extend ( & serialized_proof_values ) ;
// We prepare input proof values and we call verify
let input_buffer = & Buffer ::from ( verify_data . as_ref ( ) ) ;
let mut proof_is_valid : bool = false ;
let proof_is_valid_ptr = & mut proof_is_valid as * mut bool ;
let now = Instant ::now ( ) ;
let success = verify ( rln_pointer , input_buffer , proof_is_valid_ptr ) ;
verify_time + = now . elapsed ( ) . as_nanos ( ) ;
assert! ( success , " verify call failed " ) ;
assert_eq! ( proof_is_valid , true ) ;
}
println! (
" Average prove API call time: {:?} " ,
Duration ::from_nanos ( ( prove_time / sample_size ) . try_into ( ) . unwrap ( ) )
) ;
println! (
" Average verify API call time: {:?} " ,
Duration ::from_nanos ( ( verify_time / sample_size ) . try_into ( ) . unwrap ( ) )
) ;
}
#[ test ]
// Creating a RLN with raw data should generate same results as using a path to resources
fn test_rln_raw_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
// We create a RLN instance using a resource folder path
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We obtain the root from the RLN instance
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_rln_folder , _ ) = bytes_le_to_fr ( & result_data ) ;
// Reading the raw data from the files required for instantiating a RLN instance using raw data
let circom_path = format! ( " ./resources/tree_height_ {TEST_TREE_HEIGHT} /rln.wasm " ) ;
let mut circom_file = File ::open ( & circom_path ) . expect ( " no file found " ) ;
let metadata = std ::fs ::metadata ( & circom_path ) . expect ( " unable to read metadata " ) ;
let mut circom_buffer = vec! [ 0 ; metadata . len ( ) as usize ] ;
circom_file
. read_exact ( & mut circom_buffer )
. expect ( " buffer overflow " ) ;
let zkey_path = format! ( " ./resources/tree_height_ {TEST_TREE_HEIGHT} /rln_final.zkey " ) ;
let mut zkey_file = File ::open ( & zkey_path ) . expect ( " no file found " ) ;
let metadata = std ::fs ::metadata ( & zkey_path ) . expect ( " unable to read metadata " ) ;
let mut zkey_buffer = vec! [ 0 ; metadata . len ( ) as usize ] ;
zkey_file
. read_exact ( & mut zkey_buffer )
. expect ( " buffer overflow " ) ;
let vk_path = format! ( " ./resources/tree_height_ {TEST_TREE_HEIGHT} /verification_key.json " ) ;
let mut vk_file = File ::open ( & vk_path ) . expect ( " no file found " ) ;
let metadata = std ::fs ::metadata ( & vk_path ) . expect ( " unable to read metadata " ) ;
let mut vk_buffer = vec! [ 0 ; metadata . len ( ) as usize ] ;
vk_file . read_exact ( & mut vk_buffer ) . expect ( " buffer overflow " ) ;
let circom_data = & Buffer ::from ( & circom_buffer [ .. ] ) ;
let zkey_data = & Buffer ::from ( & zkey_buffer [ .. ] ) ;
let vk_data = & Buffer ::from ( & vk_buffer [ .. ] ) ;
// Creating a RLN instance passing the raw data
let mut rln_pointer_raw_bytes = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let success = new_with_params (
tree_height ,
circom_data ,
zkey_data ,
vk_data ,
rln_pointer_raw_bytes . as_mut_ptr ( ) ,
) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer2 = unsafe { & mut * rln_pointer_raw_bytes . assume_init ( ) } ;
// We obtain the root from the RLN instance containing raw data
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer2 , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root_rln_raw , _ ) = bytes_le_to_fr ( & result_data ) ;
// And compare that the same root was generated
assert_eq! ( root_rln_folder , root_rln_raw ) ;
}
#[ test ]
// Computes and verifies an RLN ZK proof using FFI APIs
fn test_rln_proof_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
let no_of_leaves = 256 ;
// We generate a vector of random leaves
let mut leaves : Vec < Fr > = Vec ::new ( ) ;
let mut rng = thread_rng ( ) ;
for _ in 0 .. no_of_leaves {
leaves . push ( Fr ::rand ( & mut rng ) ) ;
}
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We add leaves in a batch into the tree
2023-02-27 06:16:16 +00:00
let leaves_ser = vec_fr_to_bytes_le ( & leaves ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let input_buffer = & Buffer ::from ( leaves_ser . as_ref ( ) ) ;
let success = init_tree_with_leaves ( rln_pointer , input_buffer ) ;
assert! ( success , " init tree with leaves call failed " ) ;
// We generate a new identity pair
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = key_gen ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_secret_hash , read ) = bytes_le_to_fr ( & result_data ) ;
let ( id_commitment , _ ) = bytes_le_to_fr ( & result_data [ read .. ] . to_vec ( ) ) ;
// We set as leaf id_commitment, its index would be equal to no_of_leaves
let leaf_ser = fr_to_bytes_le ( & id_commitment ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
2023-03-02 13:45:58 +00:00
let identity_index : usize = no_of_leaves ;
2023-01-31 15:57:28 +00:00
// We generate a random signal
let mut rng = rand ::thread_rng ( ) ;
let signal : [ u8 ; 32 ] = rng . gen ( ) ;
// We generate a random epoch
let epoch = hash_to_field ( b " test-epoch " ) ;
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
let mut serialized : Vec < u8 > = Vec ::new ( ) ;
serialized . append ( & mut fr_to_bytes_le ( & identity_secret_hash ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( identity_index ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut fr_to_bytes_le ( & epoch ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( signal . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut signal . to_vec ( ) ) ;
// We call generate_rln_proof
let input_buffer = & Buffer ::from ( serialized . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = generate_rln_proof ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " generate rln proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// result_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let mut proof_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We prepare input for verify_rln_proof API
// input_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> | signal_len<8> | signal<var> ]
// that is [ proof_data | signal_len<8> | signal<var> ]
2023-03-02 13:45:58 +00:00
proof_data . append ( & mut normalize_usize ( signal . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
proof_data . append ( & mut signal . to_vec ( ) ) ;
// We call verify_rln_proof
let input_buffer = & Buffer ::from ( proof_data . as_ref ( ) ) ;
let mut proof_is_valid : bool = false ;
let proof_is_valid_ptr = & mut proof_is_valid as * mut bool ;
let success = verify_rln_proof ( rln_pointer , input_buffer , proof_is_valid_ptr ) ;
assert! ( success , " verify call failed " ) ;
assert_eq! ( proof_is_valid , true ) ;
}
#[ test ]
// Computes and verifies an RLN ZK proof by checking proof's root against an input roots buffer
fn test_verify_with_roots ( ) {
// First part similar to test_rln_proof_ffi
let tree_height = TEST_TREE_HEIGHT ;
let no_of_leaves = 256 ;
// We generate a vector of random leaves
let mut leaves : Vec < Fr > = Vec ::new ( ) ;
let mut rng = thread_rng ( ) ;
for _ in 0 .. no_of_leaves {
leaves . push ( Fr ::rand ( & mut rng ) ) ;
}
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We add leaves in a batch into the tree
2023-02-27 06:16:16 +00:00
let leaves_ser = vec_fr_to_bytes_le ( & leaves ) . unwrap ( ) ;
2023-01-31 15:57:28 +00:00
let input_buffer = & Buffer ::from ( leaves_ser . as_ref ( ) ) ;
let success = init_tree_with_leaves ( rln_pointer , input_buffer ) ;
assert! ( success , " set leaves call failed " ) ;
// We generate a new identity pair
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = key_gen ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_secret_hash , read ) = bytes_le_to_fr ( & result_data ) ;
let ( id_commitment , _ ) = bytes_le_to_fr ( & result_data [ read .. ] . to_vec ( ) ) ;
// We set as leaf id_commitment, its index would be equal to no_of_leaves
let leaf_ser = fr_to_bytes_le ( & id_commitment ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
2023-03-02 13:45:58 +00:00
let identity_index : usize = no_of_leaves ;
2023-01-31 15:57:28 +00:00
// We generate a random signal
let mut rng = rand ::thread_rng ( ) ;
let signal : [ u8 ; 32 ] = rng . gen ( ) ;
// We generate a random epoch
let epoch = hash_to_field ( b " test-epoch " ) ;
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
let mut serialized : Vec < u8 > = Vec ::new ( ) ;
serialized . append ( & mut fr_to_bytes_le ( & identity_secret_hash ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( identity_index ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut fr_to_bytes_le ( & epoch ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( signal . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut signal . to_vec ( ) ) ;
// We call generate_rln_proof
let input_buffer = & Buffer ::from ( serialized . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = generate_rln_proof ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " generate rln proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// result_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let mut proof_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We prepare input for verify_rln_proof API
// input_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> | signal_len<8> | signal<var> ]
// that is [ proof_data | signal_len<8> | signal<var> ]
2023-03-02 13:45:58 +00:00
proof_data . append ( & mut normalize_usize ( signal . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
proof_data . append ( & mut signal . to_vec ( ) ) ;
// We test verify_with_roots
// We first try to verify against an empty buffer of roots.
// In this case, since no root is provided, proof's root check is skipped and proof is verified if other proof values are valid
let mut roots_data : Vec < u8 > = Vec ::new ( ) ;
let input_buffer = & Buffer ::from ( proof_data . as_ref ( ) ) ;
let roots_buffer = & Buffer ::from ( roots_data . as_ref ( ) ) ;
let mut proof_is_valid : bool = false ;
let proof_is_valid_ptr = & mut proof_is_valid as * mut bool ;
let success =
verify_with_roots ( rln_pointer , input_buffer , roots_buffer , proof_is_valid_ptr ) ;
assert! ( success , " verify call failed " ) ;
// Proof should be valid
assert_eq! ( proof_is_valid , true ) ;
// We then try to verify against some random values not containing the correct one.
for _ in 0 .. 5 {
roots_data . append ( & mut fr_to_bytes_le ( & Fr ::rand ( & mut rng ) ) ) ;
}
let input_buffer = & Buffer ::from ( proof_data . as_ref ( ) ) ;
let roots_buffer = & Buffer ::from ( roots_data . as_ref ( ) ) ;
let mut proof_is_valid : bool = false ;
let proof_is_valid_ptr = & mut proof_is_valid as * mut bool ;
let success =
verify_with_roots ( rln_pointer , input_buffer , roots_buffer , proof_is_valid_ptr ) ;
assert! ( success , " verify call failed " ) ;
// Proof should be invalid.
assert_eq! ( proof_is_valid , false ) ;
// We finally include the correct root
// We get the root of the tree obtained adding one leaf per time
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = get_root ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " get root call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( root , _ ) = bytes_le_to_fr ( & result_data ) ;
// We include the root and verify the proof
roots_data . append ( & mut fr_to_bytes_le ( & root ) ) ;
let input_buffer = & Buffer ::from ( proof_data . as_ref ( ) ) ;
let roots_buffer = & Buffer ::from ( roots_data . as_ref ( ) ) ;
let mut proof_is_valid : bool = false ;
let proof_is_valid_ptr = & mut proof_is_valid as * mut bool ;
let success =
verify_with_roots ( rln_pointer , input_buffer , roots_buffer , proof_is_valid_ptr ) ;
assert! ( success , " verify call failed " ) ;
// Proof should be valid.
assert_eq! ( proof_is_valid , true ) ;
}
#[ test ]
// Computes and verifies an RLN ZK proof using FFI APIs
fn test_recover_id_secret_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We generate a new identity pair
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = key_gen ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_secret_hash , read ) = bytes_le_to_fr ( & result_data ) ;
let ( id_commitment , _ ) = bytes_le_to_fr ( & result_data [ read .. ] . to_vec ( ) ) ;
// We set as leaf id_commitment, its index would be equal to 0 since tree is empty
let leaf_ser = fr_to_bytes_le ( & id_commitment ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
2023-03-02 13:45:58 +00:00
let identity_index : usize = 0 ;
2023-01-31 15:57:28 +00:00
// We generate two proofs using same epoch but different signals.
// We generate two random signals
let mut rng = rand ::thread_rng ( ) ;
let signal1 : [ u8 ; 32 ] = rng . gen ( ) ;
// We generate two random signals
let signal2 : [ u8 ; 32 ] = rng . gen ( ) ;
// We generate a random epoch
let epoch = hash_to_field ( b " test-epoch " ) ;
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
let mut serialized1 : Vec < u8 > = Vec ::new ( ) ;
serialized1 . append ( & mut fr_to_bytes_le ( & identity_secret_hash ) ) ;
2023-03-02 13:45:58 +00:00
serialized1 . append ( & mut normalize_usize ( identity_index ) ) ;
2023-01-31 15:57:28 +00:00
serialized1 . append ( & mut fr_to_bytes_le ( & epoch ) ) ;
// The first part is the same for both proof input, so we clone
let mut serialized2 = serialized1 . clone ( ) ;
// We attach the first signal to the first proof input
2023-03-02 13:45:58 +00:00
serialized1 . append ( & mut normalize_usize ( signal1 . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
serialized1 . append ( & mut signal1 . to_vec ( ) ) ;
// We attach the second signal to the first proof input
2023-03-02 13:45:58 +00:00
serialized2 . append ( & mut normalize_usize ( signal2 . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
serialized2 . append ( & mut signal2 . to_vec ( ) ) ;
// We call generate_rln_proof for first proof values
let input_buffer = & Buffer ::from ( serialized1 . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = generate_rln_proof ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " generate rln proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// result_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let proof_data_1 = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We call generate_rln_proof
let input_buffer = & Buffer ::from ( serialized2 . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = generate_rln_proof ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " generate rln proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// result_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let proof_data_2 = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let input_proof_buffer_1 = & Buffer ::from ( proof_data_1 . as_ref ( ) ) ;
let input_proof_buffer_2 = & Buffer ::from ( proof_data_2 . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = recover_id_secret (
rln_pointer ,
input_proof_buffer_1 ,
input_proof_buffer_2 ,
output_buffer . as_mut_ptr ( ) ,
) ;
assert! ( success , " recover id secret call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let serialized_identity_secret_hash = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We passed two shares for the same secret, so recovery should be successful
// To check it, we ensure that recovered identity secret hash is empty
assert! ( ! serialized_identity_secret_hash . is_empty ( ) ) ;
// We check if the recovered identity secret hash corresponds to the original one
let ( recovered_identity_secret_hash , _ ) = bytes_le_to_fr ( & serialized_identity_secret_hash ) ;
assert_eq! ( recovered_identity_secret_hash , identity_secret_hash ) ;
// We now test that computing identity_secret_hash is unsuccessful if shares computed from two different identity secret hashes but within same epoch are passed
// We generate a new identity pair
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = key_gen ( rln_pointer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_secret_hash_new , read ) = bytes_le_to_fr ( & result_data ) ;
let ( id_commitment_new , _ ) = bytes_le_to_fr ( & result_data [ read .. ] . to_vec ( ) ) ;
// We set as leaf id_commitment, its index would be equal to 1 since at 0 there is id_commitment
let leaf_ser = fr_to_bytes_le ( & id_commitment_new ) ;
let input_buffer = & Buffer ::from ( leaf_ser . as_ref ( ) ) ;
let success = set_next_leaf ( rln_pointer , input_buffer ) ;
assert! ( success , " set next leaf call failed " ) ;
2023-03-02 13:45:58 +00:00
let identity_index_new : usize = 1 ;
2023-01-31 15:57:28 +00:00
// We generate a random signals
let signal3 : [ u8 ; 32 ] = rng . gen ( ) ;
// We prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
// Note that epoch is the same as before
let mut serialized : Vec < u8 > = Vec ::new ( ) ;
serialized . append ( & mut fr_to_bytes_le ( & identity_secret_hash_new ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( identity_index_new ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut fr_to_bytes_le ( & epoch ) ) ;
2023-03-02 13:45:58 +00:00
serialized . append ( & mut normalize_usize ( signal3 . len ( ) ) ) ;
2023-01-31 15:57:28 +00:00
serialized . append ( & mut signal3 . to_vec ( ) ) ;
// We call generate_rln_proof
let input_buffer = & Buffer ::from ( serialized . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = generate_rln_proof ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " generate rln proof call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// result_data is [ proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32> ]
let proof_data_3 = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We attempt to recover the secret using share1 (coming from identity_secret_hash) and share3 (coming from identity_secret_hash_new)
let input_proof_buffer_1 = & Buffer ::from ( proof_data_1 . as_ref ( ) ) ;
let input_proof_buffer_3 = & Buffer ::from ( proof_data_3 . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = recover_id_secret (
rln_pointer ,
input_proof_buffer_1 ,
input_proof_buffer_3 ,
output_buffer . as_mut_ptr ( ) ,
) ;
assert! ( success , " recover id secret call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let serialized_identity_secret_hash = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
// We passed two shares for different secrets, so recovery should be not successful
// To check it, we ensure that recovered identity secret hash is empty
assert! ( serialized_identity_secret_hash . is_empty ( ) ) ;
}
#[ test ]
// Tests hash to field using FFI APIs
fn test_seeded_keygen_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We generate a new identity pair from an input seed
let seed_bytes : & [ u8 ] = & [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] ;
let input_buffer = & Buffer ::from ( seed_bytes ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = seeded_key_gen ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " seeded key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_secret_hash , read ) = bytes_le_to_fr ( & result_data ) ;
let ( id_commitment , _ ) = bytes_le_to_fr ( & result_data [ read .. ] . to_vec ( ) ) ;
// We check against expected values
let expected_identity_secret_hash_seed_bytes = str_to_fr (
" 0x766ce6c7e7a01bdf5b3f257616f603918c30946fa23480f2859c597817e6716 " ,
16 ,
) ;
let expected_id_commitment_seed_bytes = str_to_fr (
" 0xbf16d2b5c0d6f9d9d561e05bfca16a81b4b873bb063508fae360d8c74cef51f " ,
16 ,
) ;
assert_eq! (
identity_secret_hash ,
2023-02-27 06:16:16 +00:00
expected_identity_secret_hash_seed_bytes . unwrap ( )
2023-01-31 15:57:28 +00:00
) ;
2023-02-27 06:16:16 +00:00
assert_eq! ( id_commitment , expected_id_commitment_seed_bytes . unwrap ( ) ) ;
2023-01-31 15:57:28 +00:00
}
#[ test ]
// Tests hash to field using FFI APIs
fn test_seeded_extended_keygen_ffi ( ) {
let tree_height = TEST_TREE_HEIGHT ;
// We create a RLN instance
let mut rln_pointer = MaybeUninit ::< * mut RLN > ::uninit ( ) ;
let input_buffer = & Buffer ::from ( TEST_RESOURCES_FOLDER . as_bytes ( ) ) ;
let success = new ( tree_height , input_buffer , rln_pointer . as_mut_ptr ( ) ) ;
assert! ( success , " RLN object creation failed " ) ;
let rln_pointer = unsafe { & mut * rln_pointer . assume_init ( ) } ;
// We generate a new identity tuple from an input seed
let seed_bytes : & [ u8 ] = & [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] ;
let input_buffer = & Buffer ::from ( seed_bytes ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success =
seeded_extended_key_gen ( rln_pointer , input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " seeded key gen call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( identity_trapdoor , identity_nullifier , identity_secret_hash , id_commitment ) =
deserialize_identity_tuple ( result_data ) ;
// We check against expected values
let expected_identity_trapdoor_seed_bytes = str_to_fr (
" 0x766ce6c7e7a01bdf5b3f257616f603918c30946fa23480f2859c597817e6716 " ,
16 ,
) ;
let expected_identity_nullifier_seed_bytes = str_to_fr (
" 0x1f18714c7bc83b5bca9e89d404cf6f2f585bc4c0f7ed8b53742b7e2b298f50b4 " ,
16 ,
) ;
let expected_identity_secret_hash_seed_bytes = str_to_fr (
" 0x2aca62aaa7abaf3686fff2caf00f55ab9462dc12db5b5d4bcf3994e671f8e521 " ,
16 ,
) ;
let expected_id_commitment_seed_bytes = str_to_fr (
" 0x68b66aa0a8320d2e56842581553285393188714c48f9b17acd198b4f1734c5c " ,
16 ,
) ;
2023-02-27 06:16:16 +00:00
assert_eq! (
identity_trapdoor ,
expected_identity_trapdoor_seed_bytes . unwrap ( )
) ;
assert_eq! (
identity_nullifier ,
expected_identity_nullifier_seed_bytes . unwrap ( )
) ;
2023-01-31 15:57:28 +00:00
assert_eq! (
identity_secret_hash ,
2023-02-27 06:16:16 +00:00
expected_identity_secret_hash_seed_bytes . unwrap ( )
2023-01-31 15:57:28 +00:00
) ;
2023-02-27 06:16:16 +00:00
assert_eq! ( id_commitment , expected_id_commitment_seed_bytes . unwrap ( ) ) ;
2023-01-31 15:57:28 +00:00
}
#[ test ]
// Tests hash to field using FFI APIs
fn test_hash_to_field_ffi ( ) {
let mut rng = rand ::thread_rng ( ) ;
let signal : [ u8 ; 32 ] = rng . gen ( ) ;
// We prepare id_commitment and we set the leaf at provided index
let input_buffer = & Buffer ::from ( signal . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
2023-02-16 07:56:13 +00:00
let success = ffi_hash ( input_buffer , output_buffer . as_mut_ptr ( ) ) ;
2023-01-31 15:57:28 +00:00
assert! ( success , " hash call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
// We read the returned proof and we append proof values for verify
let serialized_hash = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( hash1 , _ ) = bytes_le_to_fr ( & serialized_hash ) ;
let hash2 = hash_to_field ( & signal ) ;
assert_eq! ( hash1 , hash2 ) ;
}
2023-02-16 07:56:13 +00:00
#[ test ]
// Test Poseidon hash FFI
fn test_poseidon_hash_ffi ( ) {
// generate random number between 1..ROUND_PARAMS.len()
let mut rng = thread_rng ( ) ;
let number_of_inputs = rng . gen_range ( 1 .. ROUND_PARAMS . len ( ) ) ;
let mut inputs = Vec ::with_capacity ( number_of_inputs ) ;
for _ in 0 .. number_of_inputs {
inputs . push ( Fr ::rand ( & mut rng ) ) ;
}
2023-02-27 06:16:16 +00:00
let inputs_ser = vec_fr_to_bytes_le ( & inputs ) . unwrap ( ) ;
2023-02-16 07:56:13 +00:00
let input_buffer = & Buffer ::from ( inputs_ser . as_ref ( ) ) ;
let expected_hash = utils_poseidon_hash ( inputs . as_ref ( ) ) ;
let mut output_buffer = MaybeUninit ::< Buffer > ::uninit ( ) ;
let success = ffi_poseidon_hash ( input_buffer , output_buffer . as_mut_ptr ( ) ) ;
assert! ( success , " poseidon hash call failed " ) ;
let output_buffer = unsafe { output_buffer . assume_init ( ) } ;
let result_data = < & [ u8 ] > ::from ( & output_buffer ) . to_vec ( ) ;
let ( received_hash , _ ) = bytes_le_to_fr ( & result_data ) ;
assert_eq! ( received_hash , expected_hash ) ;
}
2023-01-31 15:57:28 +00:00
}